CAREER: Probing Polysulfide Redox Chemistry in Tunable Metal-Organic Frameworks for Energy Storage

职业:探索用于储能的可调谐金属有机框架中的多硫化物氧化还原化学

基本信息

  • 批准号:
    1945114
  • 负责人:
  • 金额:
    $ 69.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Part 1: NON-TECHNICAL SUMMARYAlthough lithium ion batteries have revolutionized the development of portable devices and electric vehicles, they are still limited by their low charge storage capacity and high cost. Lithium sulfur batteries, which utilizes inexpensive sulfur materials, are attractive energy storage devices with up to 10 times the storage ability of current lithium ion batteries. However, lithium sulfur batteries have short lifetimes, leading to frequent battery replacement. This CAREER award project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, elucidates the critical electrochemical processes that have so far hindered the adoption of lithium sulfur batteries by using metal-organic frameworks (MOFs) as a well-defined model system for evaluating the sulfur chemistry inside a battery. MOFs are porous materials that are composed of a network of connected metal ions and organic compounds arranged in an ordered fashion. The metal ions and organic linkers can be easily changed to generate a series of materials with different structures and chemical functionalities. In this way, MOFs can be manipulated to simulate battery environments for uncovering chemical mechanisms. The PI and her research group advance the fundamental knowledge on an important electrochemical challenge to Lithium sulfur batteries, and discovery of new battery materials. Alternative high-density energy storage devices, such as lithium sulfur batteries, may enable applications in smaller portable devices, long-range electric vehicles, and reliable electric grid management. Through this project the PI also promotes engagement between local elementary school students, graduate students, and postdoctoral fellows in scientific discourse, particularly in the area of energy. Additionally the PI designs a new interactive curriculum for incorporation into an existing afterschool program that serves inner-city elementary school students in Baltimore. This hands-on demonstration series aims to provoke 5th graders to evaluate their role in the advancement of energy technologies as consumers and future scientists. The scientific and educational merits of this project advance the frontiers of energy storage technologies, promote public engagement between researchers and young students, and align with the national interest of a sustainable energy future.Part 2: TECHNICAL SUMMARYEssentially all degradation processes in today's modern batteries involve poorly understood reactions at complex interfaces. This project uses molecular functionalization techniques on geometrically and atomically well-defined chemical systems to establish materials design criteria. Metal-organic frameworks (MOFs) are used to elucidate factors that influence charge transport in porous materials and develop new strategies to promote efficient polysulfide redox in lithium sulfur (Li-S) batteries. Li-S batteries can reach up to 10x the energy density of LiBs and sulfur is earth-abundant and affordable. However, the commercialization of Li-S batteries is challenged by unstable cycling performance due to polysulfide dissolution and incomplete sulfur utilization. This CAREER project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, takes advantage of the tunability and modularity of MOFs to decouple structural and chemical variables to acquire fundamental knowledge of the underlying charge transport and redox processes in Li-S batteries. Using Zr MOFs as robust model systems, the Thoi research group works to 1) identify structure-property-function relationships between pore structure, ion diffusion, and polysulfide redox properties, 2) incorporate redox-active components to control electron and ion transport, and 3) embed chemical anchors to trap polysulfides for obtaining mechanistic insights into their redox chemistry. Atomistic understanding of structure-property relationships provides design criteria for new functional sulfur electrodes. The fundamental knowledge acquired also enables the development of new charge conducting materials for electrochemical applications in the future, thus extending the application of MOFs beyond traditional gas storage and separation to electronic devices. This CAREER award project also promotes engagement between local elementary school students, graduate students, and postdoctoral fellows in scientific discourse, particularly in the area of energy. A demonstration series, entitled “EnergyNOW!” is developed for 5th grade students in an afterschool STEM program, with the objective of having students examine their relationship with energy. Each lesson includes a Q&A segment that stimulates scientific inquiry, a demonstration that involves role play and/or an experiment, and a hands-on activity that encourages problem-solving and decision-making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:虽然锂离子电池已经彻底改变了便携式设备和电动汽车的发展,但它们仍然受到其低电荷存储容量和高成本的限制。锂硫电池利用廉价的硫材料,是具有吸引力的能量存储装置,其存储能力高达当前锂离子电池的10倍。然而,锂硫电池寿命短,导致电池更换频繁。该CAREER奖项目由材料研究部的固态和材料化学项目支持,通过使用金属有机框架(MOFs)作为评估电池内部硫化学的定义明确的模型系统,阐明了迄今为止阻碍锂硫电池采用的关键电化学过程。MOFs是由有序排列的连接金属离子和有机化合物的网络组成的多孔材料。金属离子和有机连接体可以很容易地改变,以产生一系列具有不同结构和化学功能的材料。通过这种方式,可以操纵MOF来模拟电池环境,以揭示化学机制。PI和她的研究小组推进了对锂硫电池的重要电化学挑战的基础知识,并发现了新的电池材料。替代的高密度能量存储设备,例如锂硫电池,可以实现在较小的便携式设备、远程电动车辆和可靠的电网管理中的应用。通过这个项目,PI还促进了当地小学生、研究生和博士后研究员在科学话语中的参与,特别是在能源领域。此外,PI设计了一个新的互动课程纳入现有的课后计划,为巴尔的摩市中心的小学生。这个动手示范系列旨在激发五年级学生评估他们作为消费者和未来科学家在能源技术进步中的作用。该项目的科学和教育价值推动了储能技术的前沿,促进了研究人员和年轻学生之间的公众参与,并与可持续能源未来的国家利益保持一致。第2部分:技术总结基本上,当今现代电池中的所有降解过程都涉及复杂界面的反应,但人们对这些反应知之甚少。该项目使用分子功能化技术在几何和原子定义良好的化学系统,以建立材料设计标准。金属有机框架(MOFs)被用来阐明影响多孔材料中电荷传输的因素,并开发新的策略来促进锂硫(Li-S)电池中有效的多硫化物氧化还原。锂硫电池的能量密度可以达到锂硼电池的10倍,硫在地球上储量丰富,价格实惠。然而,由于多硫化物溶解和硫利用不完全,Li-S电池的商业化受到不稳定的循环性能的挑战。该CAREER项目由材料研究部的固态和材料化学项目支持,利用MOF的可调性和模块化来解耦结构和化学变量,以获得Li-S电池中潜在电荷传输和氧化还原过程的基础知识。使用Zr MOFs作为强大的模型系统,Thoi研究小组致力于1)确定孔结构,离子扩散和多硫化物氧化还原性质之间的结构-性质-功能关系,2)结合氧化还原活性组分以控制电子和离子传输,以及3)嵌入化学锚以捕获多硫化物,以获得对其氧化还原化学的机理见解。结构-性质关系的原子理解为新的功能硫电极提供了设计标准。所获得的基础知识也使得未来能够开发用于电化学应用的新的电荷传导材料,从而将MOF的应用扩展到传统的气体存储和分离到电子设备。这个职业奖项目还促进了当地小学生,研究生和博士后研究员在科学话语中的参与,特别是在能源领域。一系列题为“EnergyNOW!是为五年级学生在课后STEM计划开发的,目的是让学生检查他们与能源的关系。每节课包括一个激发科学探究的问答环节,一个涉及角色扮演和/或实验的演示,以及一个鼓励解决问题和决策的动手活动。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible 2D Boron Imidazolate Framework for Polysulfide Adsorption in Lithium–Sulfur Batteries
  • DOI:
    10.1021/acs.chemmater.2c02324
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Soumyodip Banerjee;Xu Han;M. Siegler;E. Miller;N. Bedford;Brandon C. Bukowski;V. S. Thoi
  • 通讯作者:
    Soumyodip Banerjee;Xu Han;M. Siegler;E. Miller;N. Bedford;Brandon C. Bukowski;V. S. Thoi
Phosphate‐functionalized Zirconium Metal–Organic Frameworks for Enhancing Lithium–Sulfur Battery Cycling
磷酸盐-功能化锆金属-增强锂硫电池循环的有机框架
  • DOI:
    10.1002/chem.202300821
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu, Bingqian;Baumann, Avery E.;Butala, Megan M.;Thoi, V. Sara
  • 通讯作者:
    Thoi, V. Sara
Cations Mediate Lithium Polysulfide Adsorption in Metal–Organic Frameworks for Lithium–Sulfur Batteries
  • DOI:
    10.1021/acs.jpcc.3c05539
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roberto A. Jarrín;Kevin J Bennett;V. S. Thoi;Brandon C. Bukowski
  • 通讯作者:
    Roberto A. Jarrín;Kevin J Bennett;V. S. Thoi;Brandon C. Bukowski
Phosphorus-Functionalized Organic Linkers Promote Polysulfide Retention in MOF-Based Li–S Batteries
  • DOI:
    10.1021/acsaem.2c02925
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Avery E. Baumann;Rasha I. Anayah;V. S. Thoi
  • 通讯作者:
    Avery E. Baumann;Rasha I. Anayah;V. S. Thoi
Improving Charge Transfer in Metal–Organic Frameworks through Open Site Functionalization and Porosity Selection for Li–S Batteries
  • DOI:
    10.1021/acs.chemmater.0c02438
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bingqian Liu;V. S. Thoi
  • 通讯作者:
    Bingqian Liu;V. S. Thoi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sara Thoi其他文献

Sara Thoi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
  • 批准号:
    11805087
  • 批准年份:
    2018
  • 资助金额:
    30.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
  • 批准号:
    2339799
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
Probing ultralight bosons with black holes and gravitational waves
用黑洞和引力波探测超轻玻色子
  • 批准号:
    DE240100206
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Discovery Early Career Researcher Award
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031403/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
  • 批准号:
    DE240100846
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Discovery Early Career Researcher Award
Probing Solar Axions with X-ray Optics for BabyIAXO
使用 BabyIAXO 的 X 射线光学器件探测太阳轴子
  • 批准号:
    2309980
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
CAREER: Probing Specificity and Competition in the Lipid Droplet Proteome
职业:探索脂滴蛋白质组的特异性和竞争
  • 批准号:
    2341008
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
Probing Molecular Quantum Materials by Advanced Spectroscopies
通过先进光谱探测分子量子材料
  • 批准号:
    2349345
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 69.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了