CAREER: Using Astronomy to Improve Tests of Quantum Mechanics

职业:利用天文学改进量子力学的测试

基本信息

  • 批准号:
    1945578
  • 负责人:
  • 金额:
    $ 49.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Quantum Mechanics is the theory that governs the very small, including individual particles of light called photons. A pair of photons can coordinate in certain ways, such that measuring each of them tends to give the same result under some conditions and opposite results under others. This high level of coordination that photons can exhibit, which cannot be simulated by classical (non-quantum) means, is called entanglement. In addition to being of great fundamental importance, this coordination forms the basis for the emerging technologies of quantum cryptography and quantum computing, so it is important to probe for any limits of this coordination in the most extreme conditions over (literally) astronomical distances. This project will use the hardware developed by the principal investigator for earlier quantum tests to record the time of arrival of individual photons from pulsars, which are fast-spinning neutron stars with extremely strong magnetic fields that produce beams of radiation across the electromagnetic spectrum. Careful measurements will shed light on various models behind pulsar emission and provide measurements of certain aspects of Einstein’s General relativity. All of these experiments involve building custom electronics with undergraduates, and as part of this project, the principal investigator will modernize the way the electronics lab course is taught to the college’s science majors. Rather than passively analyzing, building, debugging, and recording results from standard circuits, students will take an active role in design each week. This role will start with small, well-defined design tasks, but will deliberately scale up to an open-ended final project. Many research groups would benefit from new or improved instrumentation, and small instrumentation projects solicited from researchers across the science departments will form the core of the list of suggested final projects.It is very important in performing tests of Bell’s Inequality on quantum-mechanically entangled particles to choose the measurement basis for each particle in a way that cannot be predicted or influenced by the source of entangled particles or by the other particle. The principal investigator’s unique contribution to the field has been to improve tests of Bell’s Inequality using astronomical sources: both stars in our own galaxy and quasars at the heart of distant galaxies that emitted their light when the universe was only a tenth as old as it is today. This project continues to use quasars as a source of measurement settings whose sequence cannot be predicted without having access to the past lightcones of those quasars. This will improve delayed-choice experiments and tests of quantum erasure, reducing the plausibility that locally-causal schemes can explain the observed phenomena. This project involves building a Sagnac interferometer as a bright and pure source of entangled photons. The quality of the resulting entanglement will be measured and optimized in real time with a novel dual rotating waveplate technique. This entanglement source will be brought to an astronomical observatory and used to perform a version of Wheeler’s delayed-choice experiment where information coming from a distant quasar effectively inserts or removes a beam splitter. It will also be used as part of a test of quantum erasure, where the decision to erase or not erase which-path information will be determined not locally, but by light from a distant quasar. Both of these experiments would put constraints on locally-causal explanations for the observed quantum phenomena. The same quasar-recording hardware will be used to do time-resolved polarimetry and coarse spectral binning with sub-nanosecond precision. Similar to the principal investigator’s work on the Crab pulsar, this improved device will set limits on Einstein’s Weak Equivalence Principle by constraining the difference in arrival times between photons of different energies and polarizations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子力学是管理非常小的理论,包括称为光子的光的单个粒子。一对光子可以以某种方式协调,因此测量它们中的每一个往往在某些条件下给出相同的结果,而在其他条件下给出相反的结果。光子可以表现出的这种高水平的协调,不能用经典(非量子)手段模拟,被称为纠缠。除了具有非常重要的基础性之外,这种协调还构成了量子密码学和量子计算新兴技术的基础,因此在(字面上)天文距离上的最极端条件下探索这种协调的任何限制是很重要的。该项目将使用首席研究员为早期量子测试开发的硬件来记录来自中子星的单个光子的到达时间,中子星是快速旋转的中子星,具有极强的磁场,产生跨越电磁波谱的辐射束。仔细的测量将揭示脉冲星发射背后的各种模型,并提供爱因斯坦广义相对论某些方面的测量。所有这些实验都涉及与本科生一起构建定制电子产品,作为该项目的一部分,首席研究员将使电子实验室课程教授给学院理科专业的方式现代化。而不是被动地分析,构建,调试和记录标准电路的结果,学生将在每周的设计中发挥积极作用。这个角色将从小的,定义明确的设计任务开始,但会故意扩大到一个开放式的最终项目。许多研究小组将受益于新的或改进的仪器,向各科学系研究人员征集的小型仪器项目将构成建议期末项目列表的核心。这对于在量子上进行贝尔不等式的检验非常重要-机械纠缠粒子,以无法预测或受纠缠粒子源影响的方式为每个粒子选择测量基础或者另一个粒子。首席研究员对该领域的独特贡献是使用天文来源改进贝尔不等式的测试:我们自己星系中的恒星和遥远星系中心的类星体,当宇宙只有今天的十分之一时发出它们的光。该项目继续使用类星体作为测量设置的来源,如果没有这些类星体过去的光锥,就无法预测其序列。这将改善延迟选择实验和量子擦除测试,降低局部因果方案解释观察到的现象的可能性。该项目涉及建立一个Sagnac干涉仪作为一个明亮而纯净的纠缠光子源。所产生的纠缠的质量将被测量和优化在真实的时间与一种新的双旋转波片技术。这种纠缠源将被带到天文观测台,并用于执行惠勒的延迟选择实验,其中来自遥远类星体的信息有效地插入或移除分束器。它也将被用作量子擦除测试的一部分,其中擦除或不擦除哪条路径信息的决定将不是本地决定的,而是由来自遥远类星体的光决定的。这两个实验都将限制对所观察到的量子现象的局部因果解释。同样的类星体记录硬件将用于时间分辨偏振测量和亚纳秒精度的粗光谱合并。与首席研究员在蟹状星云脉冲星上的工作类似,这种改进的设备将通过限制不同能量和偏振的光子之间到达时间的差异来限制爱因斯坦的弱等效原理。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Goals and feasibility of the deep space quantum link
  • DOI:
    10.1117/12.2593986
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Mazzarella;M. Mohageg;D. Strekalov;A. Zhai;U. Israelsson;A. Matsko;Nan Yu;Charis Anastopoulos-Charis-Anastopo
  • 通讯作者:
    L. Mazzarella;M. Mohageg;D. Strekalov;A. Zhai;U. Israelsson;A. Matsko;Nan Yu;Charis Anastopoulos-Charis-Anastopo
Optimal Cosmic Microwave Background Lensing Reconstruction and Parameter Estimation with SPTpol Data
利用 SPTpol 数据优化宇宙微波背景透镜重建和参数估计
  • DOI:
    10.3847/1538-4357/ac02bb
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Millea, M.;Daley, C. M.;Chou, T-L.;Anderes, E.;Ade, P. A.;Anderson, A. J.;Austermann, J. E.;Avva, J. S.;Beall, J. A.;Bender, A. N.
  • 通讯作者:
    Bender, A. N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Gallicchio其他文献

Towards satellite tests combining general relativity and quantum mechanics through quantum optical interferometry: progress on the deep space quantum link
  • DOI:
    10.1140/epjqt/s40507-025-00370-1
  • 发表时间:
    2025-06-20
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Makan Mohageg;Charis Anastopoulos;Olivia Brasher;Jason Gallicchio;Bei Lok Hu;Thomas Jennewein;Spencer Johnson;Shih-Yuin Lin;Alexander Ling;Alexander Lohrmann;Christoph Marquardt;Luca Mazzarella;Matthias Meister;Raymond Newell;Albert Roura;Giuseppe Vallone;Paolo Villoresi;Lisa Wörner;Paul Kwiat
  • 通讯作者:
    Paul Kwiat
Initial Results from Harvard All-sky Optical SETI
哈佛全天空光学 SETI 的初步结果
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Howard;P. Horowitz;C. Mead;P. Sreetharan;Jason Gallicchio;Steve Howard;C. Coldwell;Joseph M. Zajac;A. Sliski
  • 通讯作者:
    A. Sliski

Jason Gallicchio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SWIFT: SCISRS: Signal Cancellation using Intelligent Surfaces for Radio Astronomy Services
合作研究:SWIFT:SCISRS:使用智能表面进行射电天文学服务的信号消除
  • 批准号:
    2229496
  • 财政年份:
    2022
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: SCISRS: Signal Cancellation using Intelligent Surfaces for Radio Astronomy Services
合作研究:SWIFT:SCISRS:使用智能表面进行射电天文学服务的信号消除
  • 批准号:
    2229497
  • 财政年份:
    2022
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Standard Grant
Pioneering ultrahigh-energy cosmic ray astronomy using new air-fluorescence telescope array
使用新型空气荧光望远镜阵列开创超高能宇宙射线天文学
  • 批准号:
    21H04470
  • 财政年份:
    2021
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Using astronomy to create STEM clubs in schools in low science capital areas
利用天文学在科学资本较低地区的学校创建 STEM 俱乐部
  • 批准号:
    ST/T005610/1
  • 财政年份:
    2020
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Research Grant
Newton STFC-NARIT: Using astronomy education as a motivator for long-term capacity building in STEM
Newton STFC-NARIT:利用天文学教育作为 STEM 长期能力建设的动力
  • 批准号:
    ST/T007117/1
  • 财政年份:
    2020
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Research Grant
Newton STFC-Narit: Using astronomy surveys to train Thai researchers in handling Big Data
Newton STFC-Narit:利用天文学调查来培训泰国研究人员处理大数据
  • 批准号:
    ST/R006539/1
  • 财政年份:
    2018
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Research Grant
Newton STFC-NARIT Long-term capacity building in STEM using astronomy with younger school pupils
Newton STFC-NARIT 利用天文学对低年级学生进行 STEM 长期能力建设
  • 批准号:
    ST/P005616/1
  • 财政年份:
    2017
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Research Grant
Time Resolved Studies of Outflows from Massive Stars using the Observatory of the Southeastern Association for Research in Astronomy
使用东南天文学研究协会天文台对大质量恒星外流进行时间分辨研究
  • 批准号:
    1747658
  • 财政年份:
    2017
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Continuing Grant
The Star Mandala as a visualization of time: The interpretation using mathematical astronomy on the arrangement of the nine traditional planets Kuyou and its relationship with the horoscope astrology
时间可视化的星曼陀罗:用数理天文学解释九个传统行星苦由的排列及其与占星学的关系
  • 批准号:
    17K02332
  • 财政年份:
    2017
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Newton STFC-NARIT: Using astronomy surveys to train Thai researchers in Big Data analysis
Newton STFC-NARIT:利用天文学调查来培训泰国研究人员进行大数据分析
  • 批准号:
    ST/P005594/1
  • 财政年份:
    2017
  • 资助金额:
    $ 49.56万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了