CAREER: Dynamics of Nonlinear Dispersive Partial Differential Equations
职业:非线性色散偏微分方程的动力学
基本信息
- 批准号:1945615
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
From the dynamics of subatomic particles to electromagnetism, fluids, plasmas and gravity among astronomical bodies, nature is governed by nonlinear dispersive partial differential equations at all scales. The objective of this NSF CAREER project is to enhance the rigorous understanding of the long-term behavior and singularities of solutions to nonlinear dispersive partial differential equations of physical origin by attacking strategically chosen open problems for a wide array of such equations. The theoretical advances from this project will lead to a clearer and more effective understanding of highly nonlinear phenomena in physics, such as solitons, gravitational singularities in general relativity and magnetic reconnection in plasma physics. The project will train undergraduate, graduate, and post-doctoral researchers by developing accessible expositions of modern research topics, organizing summer workshops and mentoring research projects.Specifically, for three classes of nonlinear dispersive equations at different levels of complexity, the following goals will be pursued: (i) for the energy-critical wave maps and (hyperbolic) Yang–Mills equations, which are examples of relativistic field theories, to prove a new forward-in-time scattering criterion for “initially outgoing” solutions, with a view towards resolving the soliton resolution conjecture in the one-soliton regime, and along a sequence of times in general; (ii) for linear and nonlinear wave equations on a black hole background, to develop a Fourier-based approach that rigorously justifies the sharp late-time asymptotics along the event horizon, which will be a starting point for investigation of the linear and nonlinear instability of the Kerr Cauchy horizon, and ultimately the strong cosmic censorship conjecture in the vicinity of the Kerr spacetimes; (iii) for the Hall-magnetohydrodynamics equations in plasma physics, to establish a general local wellposedness theory, which is interesting in view of the recent work of the PI that proved illposedness of the Cauchy problem in the vicinity of the trivial solution. Insights from various disciplines of mathematics, such as differential geometry, calculus of variations, harmonic analysis, spectral theory and microlocal analysis, will naturally enter in attaining the above goals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从亚原子粒子的动力学到天体间的电磁、流体、等离子体和引力,自然界在所有尺度上都受到非线性色散偏微分方程的控制。这个NSF CAREER项目的目标是通过攻击战略选择的开放问题,为广泛的此类方程,以提高对物理起源的非线性色散偏微分方程的长期行为和奇异性的严格理解。该项目的理论进展将导致对物理学中高度非线性现象的更清晰和更有效的理解,例如孤子,广义相对论中的引力奇点和等离子体物理学中的磁场重联。该项目将通过开发现代研究主题的无障碍博览会,组织夏季研讨会和指导研究项目来培养本科生,研究生和博士后研究人员。具体来说,对于三类不同复杂程度的非线性色散方程,将追求以下目标:(i)对于能量临界波图,(双曲)杨-米尔斯方程,这是相对论场论的例子,证明“初始向外”解的一个新的时间向前散射准则,以期解决一般情况下单孤子状态和沿着时间序列的孤子分辨猜想;(ii)对于黑洞背景下的线性和非线性波动方程,开发一种基于傅立叶的方法,严格证明沿着事件视界的尖锐的后期渐近性,这将是研究克尔柯西视界的线性和非线性不稳定性的起点,并最终在克尔时空附近的强宇宙审查猜想;(iii)霍尔磁流体力学方程在等离子体物理,建立一个一般的局部适定性理论,这是有趣的,鉴于最近的工作PI证明不适定性的柯西问题在附近的平凡的解决方案。来自不同数学学科的见解,如微分几何、变分法、调和分析、谱理论和微局部分析,将自然地参与实现上述目标。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The threshold conjecture for the energy critical hyperbolic Yang–Mills equation
能量临界双曲Yang–Mills方程的阈值猜想
- DOI:10.4007/annals.2021.194.2.1
- 发表时间:2021
- 期刊:
- 影响因子:4.9
- 作者:Oh, Sung-Jin;Tataru, Daniel
- 通讯作者:Tataru, Daniel
On the Cauchy Problem for the Hall and Electron Magnetohydrodynamic Equations Without Resistivity I: Illposedness Near Degenerate Stationary Solutions
- DOI:10.1007/s40818-022-00134-5
- 发表时间:2019-02
- 期刊:
- 影响因子:2.8
- 作者:In-Jee Jeong;Sung-Jin Oh
- 通讯作者:In-Jee Jeong;Sung-Jin Oh
The Yang-Mills heat flow and the caloric gauge
- DOI:10.24033/ast.1179
- 发表时间:2017-09
- 期刊:
- 影响因子:0
- 作者:Sung-Jin Oh;D. Tataru
- 通讯作者:Sung-Jin Oh;D. Tataru
A Scattering Theory Approach to Cauchy Horizon Instability and Applications to Mass Inflation
柯西视界不稳定性的散射理论方法及其在大规模通货膨胀中的应用
- DOI:10.1007/s00023-022-01216-7
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Luk, Jonathan;Oh, Sung-Jin;Shlapentokh-Rothman, Yakov
- 通讯作者:Shlapentokh-Rothman, Yakov
Global Nonlinear Stability of Large Dispersive Solutions to the Einstein Equations
- DOI:10.1007/s00023-021-01148-8
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:J. Luk;Sung-Jin Oh
- 通讯作者:J. Luk;Sung-Jin Oh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sung-Jin Oh其他文献
Five-year outcomes of sirolimus-eluting versus paclitaxel-eluting stents: A propensity matched study: Clinical evidence of late catch-up?
- DOI:
10.1016/j.ijcard.2010.07.023 - 发表时间:
2011-11-03 - 期刊:
- 影响因子:
- 作者:
Young-Guk Ko;Jung-Sun Kim;Donghoon Choi;Myeong-Ki Hong;Pil-Ki Min;Young Won Yoon;Bum-Kee Hong;Byoung-Kwon Lee;Hyuck-Moon Kwon;Byeong-Keuk Kim;Sung-Jin Oh;Dong-Wun Jeon;Joo-Young Yang;Yangsoo Jang - 通讯作者:
Yangsoo Jang
Finite energy global well-posedness of the (3+1)-dimensional Yang-Mills equations using a novel Yang-Mill heat flow gauge
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.2
- 作者:
Sung-Jin Oh - 通讯作者:
Sung-Jin Oh
Stability of the catenoid for the hyperbolic vanishing mean curvature equation outside symmetry
- DOI:
10.1007/s00222-025-01330-3 - 发表时间:
2025-03-20 - 期刊:
- 影响因子:3.600
- 作者:
Jonas Lührmann;Sung-Jin Oh;Sohrab Shahshahani - 通讯作者:
Sohrab Shahshahani
Gauge choice for the Yang-Mills equations using the Yang-Mills heat flow and local well-posedness in $H^{1}$
- DOI:
10.1142/s0219891614500015 - 发表时间:
2012-10 - 期刊:
- 影响因子:0
- 作者:
Sung-Jin Oh - 通讯作者:
Sung-Jin Oh
Sung-Jin Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: Modeling the Loosening of Bolted Joints due to Nonlinear Dynamics of Structural Assemblies
职业:对结构组件非线性动力学引起的螺栓接头松动进行建模
- 批准号:
2237715 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Dynamics of Holographic Acoustic Lenses for Nonlinear Ultrasound Focusing
职业:用于非线性超声聚焦的全息声学透镜的动力学
- 批准号:
2143788 - 财政年份:2022
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Back-conversion suppressed optical parametric frequency conversion: Nonlinear evolution dynamics for overcoming longstanding device limitations
职业:反向转换抑制光学参量频率转换:克服长期存在的设备限制的非线性演化动力学
- 批准号:
1944653 - 财政年份:2020
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Dynamics of Shear Wave Propagation and Shock Formation in Soft and Biological Materials
职业:软质和生物材料中剪切波传播和冲击形成的非线性动力学
- 批准号:
1942016 - 财政年份:2020
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics of Assemblies at High Temperatures
职业:高温下组件的非线性动力学
- 批准号:
1847130 - 财政年份:2019
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Structure-specific Nanoscale Dynamics Studied by Nonlinear and Magneto-optical Spectroscopy
职业:通过非线性和磁光光谱研究特定结构的纳米级动力学
- 批准号:
1801829 - 财政年份:2017
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
CAREER: Higher-Order Methods for Nonlinear Stochastic Structural Dynamics
职业:非线性随机结构动力学的高阶方法
- 批准号:
1652044 - 财政年份:2017
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
- 批准号:
1617148 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
- 批准号:
1454012 - 财政年份:2015
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant