CRII: OAC: Scalable and Integrated Data Collection Platforms for Connected Vehicle Data
CRII:OAC:用于联网车辆数据的可扩展且集成的数据收集平台
基本信息
- 批准号:1948066
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By 2030, nearly 146 million connected vehicles will be in operation in the U.S. Each vehicle will generate 25 gigabytes of data per hour; however, traditional data analytics systems are not capable of handling the high amount of data. This will require the development of novel computational and scientific tools to shape our future connected vehicle cyberinfrastructure. The project aims to create a new data mining engine embedded at the vehicle level to collect and process the streams of data in a highly efficient and scalable way. Harnessing novel data science tools, this project will address important fundamental questions of how to efficiently decide what information to collect, what to filter, and what to process within a vehicle. In turn, having an efficient in-vehicle data collection engine will improve our capabilities to build a high-impact cyberinfrastructure for connected vehicles. This cyberinfrastructure will open up new research capabilities and provide social benefits in the fields of intelligent transportation and smart cities. The data will tell us how to improve traffic congestion, how to create safer streets, and how to better design our cities, resulting in improved mobility, economic improvements, and lives being saved. This project embraces education and workforce development to educate our future data scientists and engineers through the creation of interdisciplinary learning environments, courses, and research-intensive programs. This project will also broadly promote undergraduate research, K-12 educational outreach activities, and STEM education in underrepresented groups. This project will investigate novel approaches to understand connected vehicle data, comprised of spatio-temporal trajectories and non-spatial sensor data, and develop scientific tools that can compress, impute, partition, and summarize connected vehicle data, while addressing important data challenges and scalability issues associated with the large scale of the database. First, the data collection platform will minimize data redundancy at a vehicle level through a proximity-based data sampling mechanism. Second, the platform will improve the integrability of connected vehicle data by capturing map-consistent trajectory points. Third, it will link dispersed connected vehicle data with map data by harnessing the special characteristics of new trajectory data formats. This scientific investigation centers on matrix decomposition, optimization, and spectral clustering techniques and includes city-wide vehicle sensor deployment to validate the proposed effort based on real-world and large-scale connected vehicle data. Results of the project will challenge the scientific gap between trajectory data analytics and the matrix decomposition techniques. Finally, this project will advance scientific knowledge in 1) trajectory data compression based on non-spatial sensor data, 2) the matrix decomposition techniques for the location inference of connected vehicle data, 3) the spectral graph partitioning methods for trajectories and non-spatial sensor data, and 4) large-scale trajectory data mining.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到2030年,美国将有近1.46亿辆联网汽车投入运营。每辆车每小时将产生25 GB的数据;然而,传统的数据分析系统无法处理如此大量的数据。这将需要开发新的计算和科学工具来塑造我们未来联网的汽车网络基础设施。该项目旨在创建一个嵌入在车辆级别的新数据挖掘引擎,以高效和可扩展的方式收集和处理数据流。利用新颖的数据科学工具,该项目将解决重要的基本问题,即如何有效地决定收集什么信息,过滤什么,以及在车辆内处理什么。反过来,拥有高效的车载数据收集引擎将提高我们为互联汽车构建高影响力网络基础设施的能力。这一网络基础设施将在智能交通和智慧城市领域开辟新的研究能力并提供社会效益。这些数据将告诉我们如何改善交通拥堵,如何创造更安全的街道,以及如何更好地设计我们的城市,从而提高机动性,改善经济,拯救生命。该项目包括教育和劳动力发展,通过创建跨学科的学习环境、课程和研究密集型项目来培养我们未来的数据科学家和工程师。该项目还将在代表性不足的群体中广泛促进本科生研究、K-12教育外展活动和STEM教育。该项目将研究理解互联车辆数据的新方法,包括时空轨迹和非空间传感器数据,并开发可以压缩、输入、划分和汇总互联车辆数据的科学工具,同时解决与大规模数据库相关的重要数据挑战和可扩展性问题。首先,数据采集平台将通过基于邻近的数据采样机制将车辆层面的数据冗余降至最低。其次,该平台将通过捕获地图一致的轨迹点来提高联网车辆数据的可积性。第三,利用新轨迹数据格式的特点,将分散连接的车辆数据与地图数据联系起来。这项科学调查以矩阵分解、优化和频谱聚类技术为核心,包括在全市范围内部署车辆传感器,以基于真实世界和大规模连接的车辆数据来验证所提出的工作。该项目的结果将挑战轨迹数据分析和矩阵分解技术之间的科学差距。最后,该项目将在1)基于非空间传感器数据的轨迹数据压缩,2)连接车辆数据位置推断的矩阵分解技术,3)轨迹和非空间传感器数据的谱图划分方法,以及4)大规模轨迹数据挖掘方面推进科学知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
OBD-Data-Assisted Cost-Based Map-Matching Algorithm for Low-Sampled Telematics Data in Urban Environments
- DOI:10.1109/tits.2021.3109851
- 发表时间:2022-08
- 期刊:
- 影响因子:8.5
- 作者:Patrick Alrassy;Jinwoo Jang;A. Smyth
- 通讯作者:Patrick Alrassy;Jinwoo Jang;A. Smyth
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinwoo Jang其他文献
Sensitivity analysis on the fatigue life of solid state drive solder joints by the finite element method and Monte Carlo simulation
- DOI:
10.1007/s00542-018-3819-0 - 发表时间:
2018-03-02 - 期刊:
- 影响因子:1.800
- 作者:
Yeungjung Cho;Jinwoo Jang;Gunhee Jang - 通讯作者:
Gunhee Jang
Road surface condition monitoring via multiple sensor-equipped vehicles
通过多辆配备传感器的车辆监测路面状况
- DOI:
10.1109/infcomw.2015.7179334 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jinwoo Jang;A. Smyth;Yong Yang;D. Cavalcanti - 通讯作者:
D. Cavalcanti
Jinwoo Jang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinwoo Jang', 18)}}的其他基金
Overcoming Impediments to Computer Science Students' Understanding of Code: Scaling Up Automated Methods and Broadening Participation
克服计算机科学学生理解代码的障碍:扩大自动化方法并扩大参与范围
- 批准号:
1915334 - 财政年份:2019
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-mix, Low-volume PCB Assembly System
MRI:购置多品种、小批量 PCB 装配系统
- 批准号:
1919937 - 财政年份:2019
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: Geometry-aware and Deep Learning-based Cyberinfrastructure for Scalable Modeling of Solids and Fluids
OAC 核心:基于几何感知和深度学习的网络基础设施,用于固体和流体的可扩展建模
- 批准号:
2211908 - 财政年份:2022
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2212256 - 财政年份:2022
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
- 批准号:
2209563 - 财政年份:2022
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
- 批准号:
2106738 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Robust, Scalable, and Practical Low-Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
- 批准号:
2106920 - 财政年份:2021
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: Small: Efficient and scalable tools for design and analysis of active matter systems
OAC 核心:小型:用于设计和分析活性物质系统的高效且可扩展的工具
- 批准号:
2007181 - 财政年份:2020
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: Small: Collaborative Research: Scalable Run-Time for Highly Parallel, Heterogeneous Systems
OAC 核心:小型:协作研究:高度并行、异构系统的可扩展运行时
- 批准号:
1908144 - 财政年份:2019
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
- 批准号:
1911229 - 财政年份:2019
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant