Collaborative Research: CyberTraining: Implementation: Small: Multi-disciplinary Training of Learning, Optimization and Communications for Next Generation Power Engineers
协作研究:网络培训:实施:小型:下一代电力工程师的学习、优化和通信多学科培训
基本信息
- 批准号:1949921
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-10 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the increasing adoption of interconnected power/micro grid infrastructures, today's power engineering research professionals require broader knowledge and a more diverse skillset. This project provides undergraduate and graduate students in the Northern Plains region with access and opportunity to learn using state-of-the-art smart grid cyberinfrastructure. The Northern Plains region sees increasing use and potential in renewable energy, in addition to energy exports to other areas, solidifying the importance of advanced training in power engineering. The project thus serves the national interest, as stated by NSF's mission: to promote the progress of science and to secure the national defense. The resulting curriculum and instructional materials integrate advanced skills from multiple areas into power engineering infrastructure education. Students practice the multi-disciplinary skillsets needed for the power industry using a unique, remotely connected smart grid cyberinfrastructure. They extend their academic and research portfolios and strengthen their career competitiveness as smart grid cyberinfrastructure professionals and cyberinfrastructure users for regional and national levels. The cyber training model leverages resources for underrepresented minority schools and schools with limited research cyberinfrastructure to participate, either remotely or on-site. The mobile microgrid laboratory demonstrations introduce K-12 teachers and students to Science, Technology, Engineering and Mathematics majors.This project establishes a new, remotely-connected smart grid cyberinfrastructure platform between the collaborative institutes using a real-time digital simulator, and sharing software licenses and hardware resources. This project promotes the application of advanced cyberinfrastructure techniques in power system monitoring, planning, operation and control, and prepares the next-generation power engineers to face challenges in modern power systems. This remotely connected power cyberinfrastructure provides an ideal platform for interdisciplinary research and education of computational intelligence, machine learning, control, communications, and data analytics in the smart grid area. The project team collects heterogeneous smart grid measurement data from this new cyberinfrastructure to conduct real-time learning, event-detection and data integrity, online optimization and multi-level decision-making process of intelligent systems. The project team integrates results into existing undergraduate courses and expand graduate courses from a frontier interdisciplinary viewpoint. The project team also creates replicable project templates/demos with designated benchmark data so other schools can easily adopt this new educational model with or without specific resources. Feedback from an independent evaluator, institutional stakeholders, national laboratory scientists and local industry partners supports periodic improvement of the educational model and materials. This project is funded by the Office of Advanced Cyberinfrastructure in the Directorate for Computer and Information Science and Engineering and the Division of Electrical, Communications and Cyber Systems in the Directorate for Engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着互联电力/微电网基础设施的日益普及,当今的电力工程研究专业人员需要更广泛的知识和更多样化的技能。该项目为北部平原地区的本科生和研究生提供了使用最先进的智能电网网络基础设施学习的机会。除了向其他地区出口能源外,北部平原地区可再生能源的使用和潜力也在增加,这巩固了电力工程高级培训的重要性。因此,该项目符合国家利益,正如NSF的使命所述:促进科学进步,确保国防安全。由此产生的课程和教学材料将多个领域的先进技能整合到电力工程基础设施教育中。学生使用独特的远程连接智能电网网络基础设施,练习电力行业所需的多学科技能。他们扩展了他们的学术和研究组合,并加强了他们作为区域和国家层面的智能电网网络基础设施专业人员和网络基础设施用户的职业竞争力。网络培训模式利用资源,使代表性不足的少数民族学校和研究网络基础设施有限的学校能够远程或现场参与。移动微电网实验室演示向K-12教师和学生介绍科学、技术、工程和数学专业。该项目使用实时数字模拟器在合作机构之间建立了一个新的远程连接的智能电网网络基础设施平台,并共享软件许可证和硬件资源。该项目将推动先进的网络基础设施技术在电力系统监测、规划、运行和控制方面的应用,为下一代电力工程师应对现代电力系统的挑战做好准备。这种远程连接的电力网络基础设施为智能电网领域的计算智能、机器学习、控制、通信和数据分析的跨学科研究和教育提供了理想的平台。项目组从这个新的网络基础设施中收集异构智能电网测量数据,进行智能系统的实时学习、事件检测和数据完整性、在线优化和多层次决策过程。项目团队将成果整合到现有的本科课程中,并从前沿跨学科的角度拓展研究生课程。项目团队还使用指定的基准数据创建可复制的项目模板/演示,以便其他学校可以轻松地采用这种新的教育模式,无论是否有特定的资源。来自独立评估者、机构利益相关者、国家实验室科学家和当地行业合作伙伴的反馈支持对教育模式和材料的定期改进。该项目由计算机和信息科学与工程理事会的先进网络基础设施办公室以及工程理事会的电气、通信和网络系统司资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aggregating Learning Agents for Microgrid Energy Scheduling During Extreme Weather Events
- DOI:10.1109/pesgm46819.2021.9637949
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Avijit Das;Z. Ni;Xiangnan Zhong
- 通讯作者:Avijit Das;Z. Ni;Xiangnan Zhong
An Efficient Distributed Reinforcement Learning for Enhanced Multi-Microgrid Management
- DOI:10.1109/ijcnn55064.2022.9892754
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Avijit Das;Z. Ni;Di Wu
- 通讯作者:Avijit Das;Z. Ni;Di Wu
A Novel Fitted Rolling Horizon Control Approach for Real-Time Policy Making in Microgrid
- DOI:10.1109/tsg.2020.2966931
- 发表时间:2020-07-01
- 期刊:
- 影响因子:9.6
- 作者:Das, Avijit;Ni, Zhen
- 通讯作者:Ni, Zhen
Experimental Validation of Approximate Dynamic Programming Based optimization and Convergence on Microgrid Applications
- DOI:10.1109/pesgm41954.2020.9281629
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Avijit Das;Z. Ni;Xiangnan Zhong;Di Wu
- 通讯作者:Avijit Das;Z. Ni;Xiangnan Zhong;Di Wu
Cooperative Differential Game-Based Optimal Control and Its Application to Power Systems
- DOI:10.1109/tii.2019.2955966
- 发表时间:2020-08
- 期刊:
- 影响因子:12.3
- 作者:C. Mu;Ke Wang;Z. Ni;Changyin Sun
- 通讯作者:C. Mu;Ke Wang;Z. Ni;Changyin Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Ni其他文献
Modulations of input-output properties of corticospinal tract neurons by repetitive dynamic index finger abductions.
通过重复动态食指外展调节皮质脊髓束神经元的输入输出特性。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Yahagi S.;Takeda Y;Zhen Ni;Takahashi M;Tsuji T.;Komiyama T.;Maruishi M.;Muranaka H.;Kasai T. - 通讯作者:
Kasai T.
Mechanistic insights into effects of the electronic configurations and crystal structures of iron sulfides on the two-stage Fenton degradation for benzene
铁硫化物的电子构型和晶体结构对苯的两阶段芬顿降解影响的机理见解
- DOI:
10.1016/j.cej.2025.163030 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:13.200
- 作者:
Cong Liang;Lei Yang;Jing Li;Lu Han;Yudong Feng;Mengfang Chen;Hangyu Li;Zhen Ni;Zhenyu Kang;Hongtao Sheng;Linbo Qian - 通讯作者:
Linbo Qian
SNHG9 promotes Hepatoblastoma Tumorigenesis via miR-23a-5p/Wnt3a Axis
SNHG9 通过 miR-23a-5p/Wnt3a 轴促进肝母细胞瘤肿瘤发生
- DOI:
10.21203/rs.3.rs-335750/v1 - 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
Sun Gui Feng;Rajeev Bh;ari;Liu Ya;Bian Zhixuan;Pan Quihui;Zhu Jiabei;Mao Sewi;Zhen Ni;Wang Jing;Ma Ji;Ramesh Bh;ari - 通讯作者:
ari
A fast federated reinforcement learning approach with phased weight-adjustment technique
一种具有分阶段权重调整技术的快速联邦强化学习方法
- DOI:
10.1016/j.neucom.2025.129550 - 发表时间:
2025-04-14 - 期刊:
- 影响因子:6.500
- 作者:
Yiran Pang;Zhen Ni;Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
The predictive accuracy of machine learning for the risk of death in HIV patients: a systematic review and meta-analysis
- DOI:
10.1186/s12879-024-09368-z - 发表时间:
2024-05-06 - 期刊:
- 影响因子:3.000
- 作者:
Yuefei Li;Ying Feng;Qian He;Zhen Ni;Xiaoyuan Hu;Xinhuan Feng;Mingjian Ni - 通讯作者:
Mingjian Ni
Zhen Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Ni', 18)}}的其他基金
CAREER: Toward Artificial General Intelligence for Complex Adaptive Systems: A Natural Concurrent “Learning-in-Learning” Control Paradigm
职业:走向复杂自适应系统的通用人工智能:自然并发“学习中学习”控制范式
- 批准号:
2047064 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Small: Multi-disciplinary Training of Learning, Optimization and Communications for Next Generation Power Engineers
协作研究:网络培训:实施:小型:下一代电力工程师的学习、优化和通信多学科培训
- 批准号:
1924302 - 财政年份:2019
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
RII Track-4: A Reflective Learning and Association Control Framework based on Adaptive Dynamic Programming: Architecture and Applications in Robotics
RII Track-4:基于自适应动态规划的反思性学习和关联控制框架:机器人技术的架构和应用
- 批准号:
1833005 - 财政年份:2018
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321045 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321103 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
- 批准号:
2321044 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
- 批准号:
2320980 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
- 批准号:
2320979 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321104 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
- 批准号:
2320148 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant














{{item.name}}会员




