IRES Track I:Collaborative Research:Application-Specific Asynchronous Deep Learning IC Design for Ultra-Low Power

IRES 轨道 I:协作研究:超低功耗专用异步深度学习 IC 设计

基本信息

  • 批准号:
    1951488
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This 3-year IRES Track I project recruits three cohorts of U.S. students to conduct research in China, with the major research goal as developing, fabricating, and testing an ultra-low power application-specific deep learning integrated circuit, and evaluating its performance through the integration with physical Internet-of-Things (IoT) edge computing devices. It brings together three research groups with unique expertise from University of Arkansas (ultra-low power asynchronous circuit design), University of South Alabama (context-aware memory design), and Peking University, China (deep learning algorithm development and optimization). The expected research outcomes will accelerate edge computing for a large variety of IoT applications such as advanced medical and elderly care systems, and self-driving vehicles. Each year six U.S. student participants work onsite at Peking University for eight weeks, leveraging the onsite research facilities. The multicultural, multidisciplinary nature of this project provides a unique training and career preparation opportunity for the participating students, including multidisciplinary discussion, teamwork, effective communication, and technical writing. The PIs continue their prior efforts in recruiting student participants from underrepresented and minority groups, leveraging their contacts and the existing mechanisms at each university. The research outcomes and the student experience will be disseminated nation-wide for benefiting the research community and encouraging more students to participate in similar programs.Deep learning is transforming many modern Artificial Intelligence (AI) applications, in many of which deep learning has begun to exceed human performance. However, the superior performance of deep learning comes at the cost of extremely high computational complexity associated with large datasets. Therefore, deep learning algorithms are traditionally implemented in software and executed on powerful general-purpose cloud computing platforms. In contrast to the prevailing research in general-purpose counterparts, the application-specific deep learning IC has much lower power consumption, thereby ideal for integration with power-constrained IoT devices. This IRES project is to develop, fabricate, and test an ultra-low power deep learning integrated circuit (IC), and evaluate its performance through the integration with physical IoT edge computing devices. Technical innovations to be developed by the student participants include: 1) optimization of application-specific deep learning algorithms for alleviating the requirements of hardware implementation; 2) delay-insensitive asynchronous circuit design for substantially improved energy efficiency; and 3) context-aware memory development for power savings and low implementation cost. This project uniquely connects deep learning algorithm optimization, asynchronous circuit design, and memory optimization together to achieve a highly optimized system, which will benefit the semiconductor and AI societies at large by the revolutions in hardware-tailored deep learning algorithms and specialized computing hardware. It is expected that this research will demonstrate the advantages of application-specific deep learning hardware and layout the foundation of a new and promising direction for both academic research and industrial development.This project is jointly funded by the Office of International Science and Engineering (OISE) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个为期3年的IRES Track I项目招募了三批美国学生到中国进行研究,主要研究目标是开发、制造和测试一种超低功耗专用深度学习集成电路,并通过与物联网边缘计算设备的集成来评估其性能。它汇集了来自阿肯色大学(超低功耗异步电路设计)、南阿拉巴马大学(情景感知存储器设计)和北京大学中国(深度学习算法开发和优化)的三个具有独特专业知识的研究小组。预期的研究成果将加速物联网应用的边缘计算,如先进的医疗和老年护理系统,以及自动驾驶汽车。每年有六名美国学生参加北京大学为期八周的现场工作,利用现场研究设施。该项目的多文化、多学科性质为参与的学生提供了一个独特的培训和职业准备机会,包括多学科讨论、团队合作、有效沟通和技术写作。私人投资机构继续其先前的努力,利用各自大学的联系和现有机制,从任职人数不足的群体和少数群体中招募学生参与者。研究成果和学生体验将在全国范围内传播,以造福于研究界,并鼓励更多的学生参与类似的项目。深度学习正在改变许多现代人工智能(AI)应用,在许多应用中,深度学习已经开始超过人类的表现。然而,深度学习的卓越性能是以与大数据集相关的极高计算复杂性为代价的。因此,深度学习算法传统上是在软件中实现的,并在强大的通用云计算平台上执行。与通用同类产品的主流研究相比,专用深度学习IC的功耗要低得多,因此非常适合与功率受限的物联网设备集成。本IRES项目旨在开发、制造和测试超低功耗深度学习集成电路(IC),并通过与物联网边缘计算设备的集成来评估其性能。学员将开发的技术创新包括:1)优化特定应用的深度学习算法,以减轻硬件实施的要求;2)对延迟不敏感的异步电路设计,以显著提高能效;以及3)上下文感知存储器开发,以节省能源和降低实施成本。该项目将深度学习算法优化、异步电路设计和内存优化独特地结合在一起,实现了高度优化的系统,这将通过硬件定制的深度学习算法和专门计算硬件的革命,使半导体和整个人工智能社会受益。预计这项研究将展示特定应用的深度学习硬件的优势,并为学术研究和工业发展奠定一个新的、有前途的方向的基础。该项目由国际科学与工程办公室(OISE)和既定的激励竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Na Gong其他文献

Luminance-adaptive smart video storage system
亮度自适应智能视频存储系统
VCAS: Viewing context aware power-efficient mobile video embedded memory
VCAS:查看上下文感知的节能移动视频嵌入式内存
Phase engineering and surface reconstruction of Crsubx/subMnFeNi high entropy alloys for electrocatalytic water splitting
用于电催化析水的 Crsubx/subMnFeNi 高熵合金的相工程和表面重构
  • DOI:
    10.1016/j.jallcom.2023.171039
  • 发表时间:
    2023-10-15
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Yong Wang;Na Gong;Gang Niu;Junyu Ge;Xianyi Tan;Mingsheng Zhang;Hongfei Liu;Huibin Wu;Tzee Luai Meng;Huiqing Xie;Kedar Hippalgaonkar;Zheng Liu;Yizhong Huang
  • 通讯作者:
    Yizhong Huang
Performance Analysis of Dual Vt Domino Circuits with P-V-T Variations
具有 P-V-T 变化的双 Vt 多米诺电路的性能分析
  • DOI:
    10.4028/www.scientific.net/amm.88-89.326
  • 发表时间:
    2011-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinhui Wang;Na Gong;Gang Liu;Shuqin Geng;Wuchen Wu
  • 通讯作者:
    Wuchen Wu
Effects of eight types of dwarfing self-rooted rootstocks on scion ‘Yanfu 3’ growth, fruit quality and Botryosphaeria dothidea resistance
8种矮化自根砧木对‘烟富3号’接穗生长、果实品质及葡萄球菌抗性的影响

Na Gong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Na Gong', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Privacy by Memory Design
合作研究:CNS 核心:小型:内存设计的隐私
  • 批准号:
    2211215
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RII Track 2 FEC: Building Research Infrastructure and Workforce in Edge Artificial Intelligence
RII Track 2 FEC:建设边缘人工智能研究基础设施和劳动力
  • 批准号:
    2218046
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Cooperative Agreement
RET Site: Research Experiences for Teachers in Biologically-inspired Computing Systems
RET 网站:教师在仿生计算系统方面的研究经验
  • 批准号:
    1953544
  • 财政年份:
    2020
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SHF: Small: Turning Visual Noise into Hardware Efficiency: Viewer-Aware Energy-Quality Adaptive Mobile Video Storage
SHF:小:将视觉噪声转化为硬件效率:观看者感知的能源质量自适应移动视频存储
  • 批准号:
    1815430
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
SHF: Small: Turning Visual Noise into Hardware Efficiency: Viewer-Aware Energy-Quality Adaptive Mobile Video Storage
SHF:小:将视觉噪声转化为硬件效率:观看者感知的能源质量自适应移动视频存储
  • 批准号:
    1855706
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER: Data-Mining Driven Power-Efficient Intelligent Memory Storage for Mobile Video Applications
EAGER:适用于移动视频应用的数据挖掘驱动型节能智能内存存储
  • 批准号:
    1514780
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245405
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Artificial Intelligence and Human Designer - Research Experience in Singapore (AIHD Singapore)
合作研究:IRES 第一轨:人工智能和人类设计师 - 新加坡的研究经验 (AIHD Singapore)
  • 批准号:
    2246299
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
  • 批准号:
    2246349
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track 1: Socio-ecological training in a tropical landscape
合作研究:IRES 第 1 轨道:热带景观中的社会生态培训
  • 批准号:
    2330189
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Odonata morphological adaptations to environmental gradients in Ghana: integrating student research in the field, museum, and laboratory
合作研究:IRES 第一轨:蜻蜓目形态对加纳环境梯度的适应:整合学生在现场、博物馆和实验室的研究
  • 批准号:
    2246258
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: US-Costa Rica Collaboration to Quantify the Holistic Benefits of Resource Recovery in Small-Scale Communities
合作研究:IRES 第一轨:美国-哥斯达黎加合作量化小规模社区资源回收的整体效益
  • 批准号:
    2246348
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
  • 批准号:
    2246358
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2246390
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了