FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data
FRG:协作研究:大规模异构数据的基于分位数的建模
基本信息
- 批准号:1951980
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid development of technology has led to the tremendous growth of large-scale heterogeneous data in science, economics, engineering, healthcare, and many other disciplines. For example, in a modern health information system, electronic health records routinely collect a large amount of information on many patients from heterogeneous populations across different disease categories. Such data provide unique opportunities to understand the association between features and outcomes across different subpopulations. Existing approaches have not fully addressed the formidable computational and statistical challenges. To tap into the true potential of information-rich data, this project will develop a new computational and statistical paradigm and solid theoretical foundation for analyzing large-scale heterogeneous data. In addition the project will also provide research training opportunities for graduate students. The project will build a unified, quantile-modeling based framework with an overarching goal of achieving effectiveness and reliability in analyzing heterogeneous data, especially when both the number of potential explanatory variables and the sample size are large. The specific goals are (1) to develop resampling-based inference for large-scale heterogeneous data; (2) to develop Bayesian algorithms and scalable and interpretable structure-aware approach for better inference; (3) to develop quantile-optimal decision rule estimation and inference with many covariates; (4) to develop novel estimation and inference procedure for large-scale quantile regression under censoring. The project will address some of the key barriers in scalability to data size and dimensionality, exploration of heterogeneity and structures, need for robustness, and the ability to make use of incomplete observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速发展导致了科学、经济、工程、医疗保健和许多其他学科中大规模异构数据的巨大增长。例如,在现代健康信息系统中,电子健康记录常规地收集关于来自不同疾病类别的异质群体的许多患者的大量信息。这些数据提供了独特的机会,以了解不同亚群之间的特征和结果之间的关联。现有的方法还没有完全解决可怕的计算和统计的挑战。为了挖掘信息丰富的数据的真正潜力,该项目将开发一种新的计算和统计范式,并为分析大规模异构数据奠定坚实的理论基础。此外,该项目还将为研究生提供研究培训机会。该项目将建立一个统一的,基于分位数建模的框架,其总体目标是在分析异构数据时实现有效性和可靠性,特别是当潜在的解释变量和样本量都很大时。具体目标是:(1)为大规模异质数据开发基于重采样的推理;(2)开发贝叶斯算法和可扩展和可解释的结构感知方法,以实现更好的推理;(3)开发具有许多协变量的分位数最优决策规则估计和推理;(4)开发新的估计和推理过程,用于大规模删失下的分位数回归。该项目将解决数据大小和维度的可扩展性、异质性和结构的探索、鲁棒性需求以及利用不完整观测结果的能力方面的一些关键障碍。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Selective Inference via Maximum Likelihood
- DOI:10.1080/01621459.2022.2081575
- 发表时间:2019-02
- 期刊:
- 影响因子:3.7
- 作者:Snigdha Panigrahi;Jonathan E. Taylor
- 通讯作者:Snigdha Panigrahi;Jonathan E. Taylor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Snigdha Panigrahi其他文献
An MCMC-free approach to post-selective inference
一种无 MCMC 的后选择推理方法
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Snigdha Panigrahi;J. Marković;Jonathan E. Taylor - 通讯作者:
Jonathan E. Taylor
Inference on the proportion of variance explained in principal component analysis
主成分分析解释方差比例的推断
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ronan Perry;Snigdha Panigrahi;Jacob Bien;Daniela Witten - 通讯作者:
Daniela Witten
A relevance-scalability-interpretability tradeoff with temporally evolving user personas
相关性-可扩展性-可解释性与随时间变化的用户角色的权衡
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Snigdha Panigrahi;N. Fawaz - 通讯作者:
N. Fawaz
Kinematic formula for heterogeneous Gaussian related fields
异质高斯相关场的运动公式
- DOI:
10.1016/j.spa.2018.07.013 - 发表时间:
2017 - 期刊:
- 影响因子:1.4
- 作者:
Snigdha Panigrahi;Jonathan E. Taylor;S. Vadlamani - 通讯作者:
S. Vadlamani
Maximal moments and uniform modulus of continuity for stable random fields
稳定随机场的最大矩和均匀连续模量
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:1.4
- 作者:
Snigdha Panigrahi;Parthanil Roy;Yimin Xiao - 通讯作者:
Yimin Xiao
Snigdha Panigrahi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Snigdha Panigrahi', 18)}}的其他基金
Reusing Data Efficiently for Iterative and Integrative Inference
有效地重用数据进行迭代和集成推理
- 批准号:
2113342 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant