FRG: Collaborative Research: Quantile-Based Modeling for Large-Scale Heterogeneous Data

FRG:协作研究:大规模异构数据的基于分位数的建模

基本信息

  • 批准号:
    1952306
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The rapid development of technology has led to the tremendous growth of large-scale heterogeneous data in science, economics, engineering, healthcare, and many other disciplines. For example, in a modern health information system, electronic health records routinely collect a large amount of information on many patients from heterogeneous populations across different disease categories. Such data provide unique opportunities to understand the association between features and outcomes across different subpopulations. Existing approaches have not fully addressed the formidable computational and statistical challenges. To tap into the true potential of information-rich data, this project will develop a new computational and statistical paradigm and solid theoretical foundation for analyzing large-scale heterogeneous data. In addition the project will also provide research training opportunities for graduate students. The project will build a unified, quantile-modeling based framework with an overarching goal of achieving effectiveness and reliability in analyzing heterogeneous data, especially when both the number of potential explanatory variables and the sample size are large. The specific goals are (1) to develop resampling-based inference for large-scale heterogeneous data; (2) to develop Bayesian algorithms and scalable and interpretable structure-aware approach for better inference; (3) to develop quantile-optimal decision rule estimation and inference with many covariates; (4) to develop novel estimation and inference procedure for large-scale quantile regression under censoring. The project will address some of the key barriers in scalability to data size and dimensionality, exploration of heterogeneity and structures, need for robustness, and the ability to make use of incomplete observations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速发展导致了科学、经济、工程、医疗等许多学科的大规模异质数据的巨大增长。例如,在现代健康信息系统中,电子健康记录例行公事地收集来自不同疾病类别的不同人群的许多患者的大量信息。这些数据提供了独特的机会来了解不同亚群之间的特征和结果之间的关联。现有的办法没有完全解决计算和统计方面的巨大挑战。为了挖掘信息丰富的数据的真正潜力,该项目将开发一种新的计算和统计范式,并为分析大规模不同种类的数据奠定坚实的理论基础。此外,该项目还将为研究生提供研究培训机会。该项目将建立一个统一的、基于分位数模型的框架,其首要目标是在分析不同种类的数据时实现有效性和可靠性,特别是在潜在解释变量的数量和样本量都很大的情况下。具体目标是:(1)开发基于重采样的大规模异质数据推理;(2)开发贝叶斯算法以及可扩展和可解释的结构感知方法,以更好地进行推理;(3)开发分位数最优决策规则估计和多协变量推理;(4)开发新的截尾条件下大规模分位数回归的估计和推理程序。该项目将解决数据大小和维度的可扩展性、异质性和结构的探索、健壮性需求以及利用不完整观测的能力方面的一些关键障碍。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference for High-Dimensional Exchangeable Arrays
Gaussian approximation and spatially dependent wild bootstrap for high-dimensional spatial data
Limit Distribution Theory for KL divergence and Applications to Auditing Differential Privacy
Robust inference in deconvolution
反卷积中的稳健推理
  • DOI:
    10.3982/qe1643
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Kato, Kengo;Sasaki, Yuya;Ura, Takuya
  • 通讯作者:
    Ura, Takuya
Smooth p-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications
  • DOI:
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sloan Nietert;Ziv Goldfeld;Kengo Kato
  • 通讯作者:
    Sloan Nietert;Ziv Goldfeld;Kengo Kato
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kengo Kato其他文献

Management of the patients with early stage oral tongue cancers.
早期口腔舌癌患者的治疗。
  • DOI:
    10.1620/tjem.212.389
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Shiga;T. Ogawa;Shun Sagai;Kengo Kato;Toshimitsu Kobayashi
  • 通讯作者:
    Toshimitsu Kobayashi
Numerical simulation of undrained cyclic behavior for desaturated silica sands
去饱和硅砂不排水循环行为的数值模拟
「工業統計調査のパネル化のためのコンバータ(1993年-2009年)」
《工业统计调查分组转换器(1993-2009)》
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hayakawa;K;Kengo Kato;瀧本太郎・坂本直樹;Kazuhiro Kurose & Naoki Yoshihara;阿部武司・人見和也・小西葉子・冨田秀昭・内野泰助
  • 通讯作者:
    阿部武司・人見和也・小西葉子・冨田秀昭・内野泰助
An Econometric Analysis of Firm Specific Productivities: Evidence from Japanese plant level data
企业特定生产率的计量经济学分析:来自日本工厂级数据的证据
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小西葉子;齋藤有希子;Shigeki Kano;瀧本太郎・坂本直樹;Kazuhiro Kurose;Kengo Kato;早川和彦・小林庸平;市村英彦・小西葉子・西山慶彦
  • 通讯作者:
    市村英彦・小西葉子・西山慶彦
Inference for measurement error models
测量误差模型的推断
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Belloni;A.;Chernozhukov;V.;Chetverikov;D.;and Kato;K.;Kengo Kato;Kengo Kato
  • 通讯作者:
    Kengo Kato

Kengo Kato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kengo Kato', 18)}}的其他基金

New Challenges in Statistical Inference with Regularized Optimal Transport
正则化最优传输统计推断的新挑战
  • 批准号:
    2210368
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Bootstrap Methods in High Dimensions: Complex Dependence Structures and Refinements
高维引导方法:复杂的依赖结构和改进
  • 批准号:
    2014636
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了