Data-Enabled Acceleration of Stochastic Computational Experiments

随机计算实验的数据加速

基本信息

  • 批准号:
    1952781
  • 负责人:
  • 金额:
    $ 16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project will advance the ability to accelerate stochastic computational experiments with the aid of heterogeneous data (for example, empirical observations, multi-fidelity simulations, and expert knowledge). This work is motivated by the trend of computational experiments in science and engineering. These experiments increasingly rely on probabilistic models to represent epistemic uncertainties (such as those in physics-based model specification) and aleatory uncertainties (noise in experiments and observational data). To date crude Monte Carlo simulation dominates such stochastic computational experiments mainly due to its simplicity. Efforts to accelerate the experiments have generally been ad-hoc and narrowly applicable to a particular science or engineering problem. This project will produce methods and tools for domain scientists and engineers with a potential to expedite or even enable breakthroughs based on stochastic computational experiments. These methods will help overcome the computational challenge associated with investigating unusual strings of events (for example, nuclear meltdown, cascading blackout, and epidemic outbreak) that are critical to the nation's economy, security, and health. To maximally reach out to domain scientists and engineers, this project will design and implement an open-source software package of the methods. An online workshop will be designed and conducted to demonstrate the software and train researchers and practitioners. To build the capacity of the next generation of researchers and practitioners, the project team will recruit and engage with college and high-school students, especially those from underrepresented backgrounds, through a partnership with diversity enhancement programs in the university. Graduate students will be directly involved in designing and executing research, while undergraduate students will participate in software development and testing, being mentored and trained as data-enabled computational researchers.Even though comprehensive consideration of uncertainties in a scientific or engineering study is commendable, an unguided computational investment on crude Monte Carlo simulation often results in an enormous waste of time and resources. Furthermore, to attain a required accuracy of probabilistic analysis, the associated computational burden can be a major bottleneck or even a barrier to scientific and engineering discovery, especially when the event of interest is extreme, rare, or peculiar. To address this challenge, this project will innovate a unified methodological framework that leverages heterogeneous data for speeding up stochastic computational experiments without compromising the accuracy of probabilistic analysis. The framework will include methods for identifying and exploiting a low-dimensional manifold (naturally appearing in science and engineering) of high-dimensional simulation input space to speed up stochastic computational experiments by addressing the curse of dimensionality. For the accelerated probabilistic analysis, asymptotically valid confidence bounds will be constructed to ensure the desired analysis accuracy. The framework will prescribe how to adaptively allocate computational resources for exploring the simulation input space while exploiting the important input manifold to minimize the computational expenditure while maintaining the desired analysis accuracy. The project will validate the methods and verify the open-source software developed for broader impacts, based on two engineering simulation case studies, namely, structural reliability evaluation of a wind turbine and cascading failure analysis of a power grid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将借助不同种类的数据(例如,经验观测、多保真模拟和专家知识)来提高加速随机计算实验的能力。这项工作是受科学和工程计算实验发展趋势的推动。这些实验越来越依赖概率模型来表示认知不确定性(如基于物理的模型规范中的不确定性)和射电不确定性(实验和观测数据中的噪声)。到目前为止,粗糙的蒙特卡罗模拟主要是因为它的简单性而主导了这种随机计算实验。加速实验的努力通常是临时的,仅适用于特定的科学或工程问题。该项目将为领域科学家和工程师提供方法和工具,有可能加快甚至实现基于随机计算实验的突破。这些方法将有助于克服与调查对国家经济、安全和健康至关重要的不寻常事件(例如,核熔毁、连锁停电和流行病爆发)相关的计算挑战。为了最大限度地接触到领域的科学家和工程师,这个项目将设计和实现一个开源的方法软件包。将设计和举办一个在线讲习班,以演示该软件并培训研究人员和从业人员。为了培养下一代研究人员和实践者的能力,项目团队将通过与大学的多样性增进项目合作,招募并接触大学生和高中生,特别是那些来自代表性不足的背景的学生。研究生将直接参与设计和执行研究,而本科生将参与软件开发和测试,接受数据支持的计算研究人员的指导和培训。尽管在科学或工程研究中综合考虑不确定性是值得称赞的,但在粗略的蒙特卡罗模拟上进行无指导的计算投资往往会导致巨大的时间和资源浪费。此外,为了达到概率分析所需的精确度,相关的计算负担可能是科学和工程发现的主要瓶颈甚至障碍,特别是当感兴趣的事件是极端、罕见或特殊的时候。为了应对这一挑战,该项目将创新一个统一的方法框架,利用不同类型的数据来加快随机计算实验,而不会影响概率分析的准确性。该框架将包括识别和利用高维模拟输入空间的低维流形(在科学和工程中自然出现)的方法,以通过解决维度诅咒来加速随机计算实验。对于加速概率分析,将构造渐近有效的置信限以确保期望的分析精度。该框架将规定如何自适应地分配计算资源以探索模拟输入空间,同时利用重要的输入流形来最小化计算支出,同时保持期望的分析精度。该项目将基于两个工程模拟案例研究,即风力涡轮机的结构可靠性评估和电网的连锁故障分析,验证方法和为更广泛的影响开发的开源软件。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solution manifold and its statistical applications
解流形及其统计应用
Pattern graphs: A graphical approach to nonmonotone missing data
  • DOI:
    10.1214/21-aos2094
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yen-Chi Chen
  • 通讯作者:
    Yen-Chi Chen
Statistical Inference with Local Optima
Kernel Smoothing, Mean Shift, and Their Learning Theory with Directional Data
核平滑、均值平移及其使用定向数据的学习理论
The Emptiness Inside: Finding Gaps, Valleys, and Lacunae with Geometric Data Analysis
  • DOI:
    10.3847/1538-3881/ac961e
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gabriella Contardo;D. Hogg;Jason A. S. Hunt;J. Peek;Yen-Chi Chen
  • 通讯作者:
    Gabriella Contardo;D. Hogg;Jason A. S. Hunt;J. Peek;Yen-Chi Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Youngjun Choe其他文献

Perspectives of Fitness, Parks, and Active Transportation Organizations on Factors Influencing Physical Activity and Wellbeing during Disaster Recovery
健身、公园和主动交通组织对灾后恢复期间影响体育活动和福祉因素的看法
Computationally Efficient Uncertainty Minimization in Wind Turbine Extreme Load Assessments
风力涡轮机极限负载评估中计算高效的不确定性最小化
Oracle Importance Sampling for Stochastic Simulation Models
Oracle 随机模拟模型重要性抽样
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yen;Youngjun Choe
  • 通讯作者:
    Youngjun Choe
Street View Data Collection Design for Disaster Reconnaissance
灾害侦察街景数据采集设计
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicole A. Errett;J. Wartman;S. Miles;Ben Silver;M. Martell;Youngjun Choe
  • 通讯作者:
    Youngjun Choe
Identifying DMSMS availability risk at the system level
识别系统级别的 DMSMS 可用性风险

Youngjun Choe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Youngjun Choe', 18)}}的其他基金

EAGER: SAI: Collaborative Research: Conceptualizing Interorganizational Processes for Supporting Interdependent Lifeline Infrastructure Recovery
EAGER:SAI:协作研究:概念化支持相互依赖的生命线基础设施恢复的组织间流程
  • 批准号:
    2121616
  • 财政年份:
    2021
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Participatory Statistical Inference of Interdependent Critical Infrastructure Recovery Times
相互依赖的关键基础设施恢复时间的参与式统计推断
  • 批准号:
    1824681
  • 财政年份:
    2018
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant

相似海外基金

M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
  • 批准号:
    10096988
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    EU-Funded
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
  • 批准号:
    10110118
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    EU-Funded
Low Carbon Impact AI-Enabled Net Zero Advisory Solution
低碳影响人工智能支持的净零咨询解决方案
  • 批准号:
    10112272
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Collaborative R&D
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
  • 批准号:
    EP/X040828/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Research Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了