FRG : Collaborative Research : Pseudorandomness in Ramsey Theory
FRG:协作研究:拉姆齐理论中的伪随机性
基本信息
- 批准号:1952786
- 负责人:
- 金额:$ 62.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Ramsey theory refers to a large body of deep results in mathematics which have a common theme: find uniform substructures in large combinatorial structures. It is now one of the most central areas in modern combinatorics. The subject was founded by Frank Ramsey in 1930 while studying the decidability of logical systems and his foundational result is now known as Ramsey’s theorem. His theorem was rediscovered in 1935 by Paul Erdos and George Szekeres while studying a seemingly unrelated geometric question. Given these diverse origins, it is not surprising that Ramsey’s theorem has had a wide range of applications in other areas of mathematics including logic, geometry, number theory, and theoretical computer science.The goal of this focused research group is to obtain new bounds for classical Ramsey numbers. The group will use a wide range of tools and techniques in the area including the probabilistic method, the stepping-up lemma, and the theory of pseudorandom graphs. Very recently, Mubayi and Verstraete established a surprising connection between the Ramsey numbers and pseudorandom graphs based on the work of Alon and Rodl, thus moving the emphasis of the field from random graphs to pseudorandom graphs. Moreover, substantial progress has recently been made on hypergraph Ramsey numbers, where we now know the tower growth rate for many of these numbers. It is expected that further work on these problems will lead to new methods and applications as well. Finally, a substantial number of students and early-career researchers will be trained and supported, and the collaborative results arising from the research will be disseminated widely at conferences, workshops and via publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拉姆齐理论指的是数学中一大堆深刻的结果,它们有一个共同的主题:在大型组合结构中找到统一的子结构。它现在是现代组合学中最核心的领域之一。这门学科是由弗兰克·拉姆齐于1930年创立的,当时他正在研究逻辑系统的可判断性,他的基本结果现在被称为拉姆齐定理。1935年,保罗·埃尔多斯和乔治·塞克尔斯在研究一个看似无关的几何问题时重新发现了他的定理。考虑到这些不同的起源,Ramsey定理在其他数学领域有广泛的应用也就不足为奇了,包括逻辑、几何、数论和理论计算机科学。这个专注的研究小组的目标是获得经典Ramsey数的新界。该小组将在该领域使用广泛的工具和技术,包括概率方法、步进引理和伪随机图理论。最近,Mubayi和Verstraete在Alon和Rodl的工作基础上建立了Ramsey数和伪随机图之间令人惊讶的联系,从而将该领域的重点从随机图转移到伪随机图。此外,最近在超图Ramsey数方面取得了实质性的进展,我们现在知道其中许多数字的塔增长率。预计在这些问题上的进一步工作也将导致新的方法和应用。最后,将培训和支持相当数量的学生和早期职业研究人员,研究产生的合作成果将在会议、研讨会和出版物上广泛传播。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sunflowers in Set Systems of Bounded Dimension
有界维集合系统中的向日葵
- DOI:10.4230/lipics.socg.2021.37
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Fox, Jacob;Pach, Janos;Suk, Andrew
- 通讯作者:Suk, Andrew
Cliques with many colors in triple systems
三重系统中具有多种颜色的派系
- DOI:10.4310/joc.2021.v12.n4.a2
- 发表时间:2021
- 期刊:
- 影响因子:0.3
- 作者:Mubayi, Dhruv;Suk, Andrew
- 通讯作者:Suk, Andrew
A Note on Visible Islands
关于可见岛屿的注释
- DOI:10.1556/012.2022.01524
- 发表时间:2022
- 期刊:
- 影响因子:0.7
- 作者:Leuchtner, Sophie;Nicolás, Carlos M.;Suk, Andrew
- 通讯作者:Suk, Andrew
A note on the Erdős-Hajnal hypergraph Ramsey problem
关于 ErdÅs-Hajnal 超图 Ramsey 问题的注解
- DOI:10.1090/proc/15839
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Mubayi, Dhruv;Suk, Andrew;Zhu, Emily
- 通讯作者:Zhu, Emily
Hasse diagrams with large chromatic number
大色数哈斯图
- DOI:10.1112/blms.12457
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Suk, Andrew;Tomon, István
- 通讯作者:Tomon, István
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacques Verstraete其他文献
Jacques Verstraete的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacques Verstraete', 18)}}的其他基金
2020 Graduate Student Combinatorics Conference
2020年研究生组合学会议
- 批准号:
1933360 - 财政年份:2019
- 资助金额:
$ 62.16万 - 项目类别:
Standard Grant
Turan-Type Extremal Problems and Applications
图兰型极值问题及其应用
- 批准号:
1800832 - 财政年份:2018
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
Extremal Combinatorics and Applications
极值组合学及其应用
- 批准号:
1362650 - 财政年份:2014
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
Extremal combinatorial structures and algorithms
极值组合结构和算法
- 批准号:
1101489 - 财政年份:2011
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
Turan-type problems and probabilistic methods in extremal combinatorics
极值组合学中的图兰型问题和概率方法
- 批准号:
0800704 - 财政年份:2008
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 62.16万 - 项目类别:
Continuing Grant














{{item.name}}会员




