Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints

协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析

基本信息

  • 批准号:
    1953267
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This research project focuses on data structures that are represented as curves or surfaces. Such structures occur in applications ranging from brain anatomy, computer vision, and molecular biology to meteorological and financial data. Data can be either directly acquired by devices such as laser scans or indirectly reconstructed from microscopy or magnetic resonance imaging. Such images and analyses appear for example in the study of human anatomy and motion or in applications to computer graphics and motion. The project lies in the broad area of statistical shape analysis, in which one tries to quantify geometric and/or topological variability within and across populations. The work aims to develop practical methods to characterize the shape of data objects in order to ascertain their roles in larger systems. The project will involve graduate students and produce open source software. The project relies on the paradigms of elastic shape analysis, which is traditionally concerned with analyzing the variability in the geometries of the objects under consideration. At its core is the notion of a distance between two shapes, which stems from a Riemannian setting using a metric that is invariant to the action of certain shape-preserving transformations and embeds both the global nonlinearity of the space as well as its local linearity. The first goal is to develop a comprehensive theoretical and numerical framework for elastic shape analysis of curves and surfaces that allows for topological inconsistencies and partial matching constraints. This framework combines elastic shape analysis with methods from geometric measure theory and topological data analysis. The second goal is to apply the framework to a wide variety of synthetic and real data, in particular to morphological analysis of high-resolution orthopedic surface complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目的重点是用曲线或曲面表示的数据结构。这种结构的应用范围从脑解剖学、计算机视觉、分子生物学到气象和金融数据。数据既可以通过激光扫描等设备直接获取,也可以通过显微镜或磁共振成像间接重建。这样的图像和分析出现在人体解剖学和运动的研究中,或者在计算机图形学和运动的应用中。该项目属于统计形状分析的广泛领域,其中试图量化人口内部和人口之间的几何和/或拓扑变化。这项工作旨在开发实用的方法来表征数据对象的形状,以便确定它们在更大的系统中的角色。该项目将涉及研究生,并生产开源软件。该项目依赖于弹性形状分析的范例,弹性形状分析传统上关注于分析所考虑的物体几何形状的可变性。其核心是两个形状之间距离的概念,该概念源于黎曼设置,该度量对某些形状保持变换的作用是不变的,并且嵌入了空间的全局非线性和局部线性。第一个目标是为允许拓扑不一致和部分匹配约束的曲线和曲面的弹性形状分析开发一个全面的理论和数值框架。该框架将弹性形状分析与几何测量理论和拓扑数据分析方法相结合。第二个目标是将该框架应用于各种各样的合成和真实数据,特别是高分辨率骨科表面复合物的形态分析。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Diffeomorphic Flow-Based Variational Framework for Multi-Speaker Emotion Conversion
Body mass classification from skeletal elements using landmark-free morphological atlas estimation with diffeomorphic shape mapping
使用具有微分同形形状映射的无地标形态图谱估计对骨骼元素进行体重分类
  • DOI:
    10.1117/12.2655795
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Heyuan;Shi, Gengxin;Meckel, Lauren;Cunningham, Deborah;Wescott, Daniel J.;Sylvester, Adam D.;Charon, Nicolas;Zbijewski, Wojciech
  • 通讯作者:
    Zbijewski, Wojciech
Supervised Deep Learning of Elastic SRV Distances on the Shape Space of Curves
曲线形状空间上弹性 SRV 距离的监督深度学习
A New Variational Model for Shape Graph Registration with Partial Matching Constraints
具有部分匹配约束的形状图配准的新变分模型
  • DOI:
    10.1137/21m1418587
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Sukurdeep, Yashil;Bauer, Martin;Charon, Nicolas
  • 通讯作者:
    Charon, Nicolas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolas Charon其他文献

A scalable framework for learning the geometry-dependent solution operators of partial differential equations
用于学习偏微分方程的几何依赖解算符的可扩展框架
  • DOI:
    10.1038/s43588-024-00732-2
  • 发表时间:
    2024-12-09
  • 期刊:
  • 影响因子:
    18.300
  • 作者:
    Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Natalia Trayanova;Mauro Maggioni
  • 通讯作者:
    Mauro Maggioni
PO-05-062 AI-BASED SHAPE ANALYSIS CORRELATES LEFT ATRIAL APPENDAGE MORPHOLOGY WITH STROKE RISK IN PATIENTS WITH ATRIAL FIBRILLATION
PO-05-062 基于人工智能的形状分析将左心耳附属结构形态与心房颤动患者的中风风险相关联
  • DOI:
    10.1016/j.hrthm.2025.03.1460
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Minglang Yin;Zan Ahmad;Emmanuel Hartman;Yashil Sukurdeep;Shiyi Chen;Jiwoo Noh;Nicolas Charon;David D. Spragg;Natalia A. Trayanova
  • 通讯作者:
    Natalia A. Trayanova
DH-482888-001 PREDICTING PERSONALIZED CARDIAC ELECTROPHYSIOLOGY USING DEEP LEARNING
DH-482888-001 使用深度学习预测个性化心脏电生理学
  • DOI:
    10.1016/j.hrthm.2024.03.261
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Mauro Maggioni;Natalia A. Trayanova
  • 通讯作者:
    Natalia A. Trayanova

Nicolas Charon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolas Charon', 18)}}的其他基金

Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
  • 批准号:
    1945224
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
A General and Efficient Framework for Computational Shape Analysis Through Geometric Distributions
通过几何分布进行计算形状分析的通用且有效的框架
  • 批准号:
    1819131
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了