NSF/MCB-BSF High-resolution mapping of the protein landscape in plant photosynthetic membranes
NSF/MCB-BSF 植物光合膜中蛋白质景观的高分辨率绘图
基本信息
- 批准号:1953570
- 负责人:
- 金额:$ 90.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Life on earth is fueled by photosynthesis, which converts sunlight into metabolic energy forms. In plants, photosynthetic energy conversion is realized by pigment-protein complexes that are harbored in highly specialized thylakoid membranes inside the chloroplasts. The dynamic response of the protein landscape in thylakoid membranes to unpredictable environmental changes (i.e. fluctuations in sunlight intensity by clouds, self-shading of leaves in wind) triggers photoprotective high-energy quenching (qE) that is essential for the survival of the plant. The project will map qE-induced protein landscape dynamics in thylakoid membranes with molecular resolution as a basis for understanding key photosynthetic functions. The intellectual merit of the proposed work is that it defines an innovative and complete pipeline of methods, ranging from state-of the art electron microscopy to coarse grain computer simulations, which will provide a quantitative understanding of photosynthetic light harvesting and electron transport. This pipeline will lead to urgently needed insights into dynamic structure-function relationships in thylakoid membranes. Furthermore, it is raising protein landscape analysis to a new level with unprecedented resolution to increase our in-depth understanding of photosynthetic energy conversion. The broader impact of the project is twofold: First, it will provide hands-on research experience to undergraduate students from underrepresented groups, and establish a new computer-based teaching tool for a computational chemistry course. Second, social benefits of the proposed work are expected for the improvement of crop plants and biofuel prospects since it turns out that optimization and adjustment of the qE mechanisms by bioengineering could be a powerful tool to increase plant performances. To generate high-resolution protein maps of the thylakoid protein landscape as basis to provide mechanistic understanding for the qE-dependent regulation of light-harvesting and electron transport, three specific aims will be pursued. Aim #1: Establishing high-resolution protein maps for different qE states. Plants will be examined using electron microscopy and compositional analysis which will lead to detailed coarse grain thylakoid protein landscapes. Aim #2: Determine how qE-induced changes in protein landscapes impact light harvesting and photoprotective qE. Coarse grain protein maps of thylakoid membranes will be used to model photosynthetic light harvesting in order to interpret measured data. Aim #3: Determine how qE-triggered switches in protein landscapes control diffusion dependent electron transport. A dynamic protein landscape model for the entire thylakoid membrane will be developed that allows simulation of the whole photosynthetic electron transport to understand in vivo data. This collaborative US/Israel project is supported by the US National Science Foundation and the Israeli Binational Science Foundation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球上的生命是由光合作用提供能量的,光合作用将阳光转化为新陈代谢能量。在植物中,光合作用的能量转换是通过色素-蛋白质复合体实现的,这些复合体存在于叶绿体内高度专门化的类囊体膜中。类囊体膜中蛋白质景观对不可预测的环境变化(如云对阳光强度的波动,风中叶片的自我遮蔽)的动态响应触发了对植物生存至关重要的光保护性高能猝灭(QE)。该项目将绘制QE诱导的类囊体膜中蛋白质景观动态图,并以分子分辨率作为了解关键光合作用功能的基础。这项拟议工作的学术价值在于,它定义了一系列创新和完整的方法,从最先进的电子显微镜到粗粒计算机模拟,将提供对光合作用光收集和电子传输的定量理解。这条管道将导致对类囊体膜动态结构-功能关系的迫切需要的洞察。此外,它以前所未有的分辨率将蛋白质景观分析提高到一个新的水平,以增加我们对光合作用能量转换的深入了解。该项目的更广泛影响有两个:首先,它将为来自代表性不足群体的本科生提供实践研究体验,并为计算化学课程建立一个新的基于计算机的教学工具。其次,拟议工作的社会效益有望改善作物和生物燃料前景,因为事实证明,通过生物工程优化和调整量化宽松机制可能是提高植物性能的有力工具。为了生成类囊体蛋白景观的高分辨率蛋白质图作为基础,为依赖QE的捕光和电子传递调控提供机制理解,将追求三个具体目标。目标1:建立不同量化宽松状态的高分辨率蛋白质图谱。将使用电子显微镜和成分分析对植物进行检查,这将导致详细的粗粒类囊体膜蛋白景观。目的#2:确定QE诱导的蛋白质景观的变化如何影响光捕获和光保护QE。类囊体膜的粗粒蛋白质图将被用来模拟光合作用的光收集,以便解释测量数据。目的#3:确定QE触发的蛋白质中的开关如何控制扩散相关的电子传递。将开发整个类囊体膜的动态蛋白质景观模型,该模型允许模拟整个光合作用电子传输,以了解活体数据。这一美国/以色列合作项目得到了美国国家科学基金会和以色列双国科学基金会的支持。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reply to: Is the debate over grana stacking formation finally solved?
- DOI:10.1038/s41477-021-00881-6
- 发表时间:2021-03
- 期刊:
- 影响因子:18
- 作者:F. Müh;B. van Oort;Sujith Puthiyaveetil;H. Kirchhoff
- 通讯作者:F. Müh;B. van Oort;Sujith Puthiyaveetil;H. Kirchhoff
Proteoliposomes for Studying Lipid-protein Interactions in Membranes in vitro
- DOI:10.21769/bioprotoc.4197
- 发表时间:2021-10-20
- 期刊:
- 影响因子:0.8
- 作者:Kirchhoff,Helmut
- 通讯作者:Kirchhoff,Helmut
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helmut Kirchhoff其他文献
Quinone Diffusion in Photosynthetic Membranes: Challenges Caused by Complex Membrane Architectures
- DOI:
10.1016/j.bpj.2018.11.032 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Helmut Kirchhoff - 通讯作者:
Helmut Kirchhoff
Architectural switches in plant thylakoid membranes
- DOI:
10.1007/s11120-013-9843-0 - 发表时间:
2013-05-16 - 期刊:
- 影响因子:3.700
- 作者:
Helmut Kirchhoff - 通讯作者:
Helmut Kirchhoff
Helmut Kirchhoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helmut Kirchhoff', 18)}}的其他基金
IRES Track I: Student Research Experience in Germany to Resolve Complex Plant Traits
IRES Track I:学生在德国解决复杂植物性状的研究经验
- 批准号:
2153551 - 财政年份:2022
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
NSF/MCB-BSF:Understanding Photosynthetic Energy Conversion on the Mesoscale
NSF/MCB-BSF:了解中尺度的光合能量转换
- 批准号:
1616982 - 财政年份:2016
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
Collaborative Research: Structural and Molecular Mechanisms for Protein Repair in Photosynthetic Membranes
合作研究:光合膜蛋白质修复的结构和分子机制
- 批准号:
1158571 - 财政年份:2012
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
相似国自然基金
MCB1促进胆囊癌化疗耐药和免疫逃逸的机制及临床应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
单节合型胆红素(MCB)在胆结石生成上的作用
- 批准号:39070790
- 批准年份:1990
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
- 批准号:
2324615 - 财政年份:2023
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
NSF/MCB-BSF: Probing cellular surplus in single bacterial cells to understand concerted controls of cell growth and adaptation
NSF/MCB-BSF:探测单个细菌细胞中的细胞盈余,以了解细胞生长和适应的协调控制
- 批准号:
2309595 - 财政年份:2023
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
NSF/MCB-BSF: De novo design of minimalistic light-switchable protein binding domains
NSF/MCB-BSF:简约光可切换蛋白结合域的从头设计
- 批准号:
2306190 - 财政年份:2023
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
Collaborative Research: NSF/MCB-BSF: The effect of transcription factor binding on UV lesion accumulation
合作研究:NSF/MCB-BSF:转录因子结合对紫外线损伤积累的影响
- 批准号:
2324614 - 财政年份:2023
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
NSF/MCB-BSF: Revealing the steps and modulators of coronavirus fusion using single-molecule tools
NSF/MCB-BSF:使用单分子工具揭示冠状病毒融合的步骤和调节剂
- 批准号:
2207688 - 财政年份:2022
- 资助金额:
$ 90.15万 - 项目类别:
Standard Grant
NSF-MCB/BSF - Composition and Stoichiometry of mRNA-protein Complexes Leading to Nuclear Export and Gene Expression Regulation
NSF-MCB/BSF - 导致核输出和基因表达调控的 mRNA-蛋白质复合物的组成和化学计量
- 批准号:
2140761 - 财政年份:2022
- 资助金额:
$ 90.15万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Direct force measurements and analysis of intrinsically disordered proteins
NSF/MCB-BSF:本质无序蛋白质的直接力测量和分析
- 批准号:
2113302 - 财政年份:2021
- 资助金额:
$ 90.15万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Modeling the mechanisms that define Notch signal strength using in-vivo synthetic and quantitative biology
NSF/MCB-BSF:使用体内合成和定量生物学对定义 Notch 信号强度的机制进行建模
- 批准号:
2114950 - 财政年份:2021
- 资助金额:
$ 90.15万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Mechanism of liquid-liquid phase separation in pathway-specific transcription regulation
NSF/MCB-BSF:途径特异性转录调控中的液-液相分离机制
- 批准号:
2110314 - 财政年份:2021
- 资助金额:
$ 90.15万 - 项目类别:
Continuing Grant
NSF/MCB-BSF: Sentinels: Viral First Responder Cells (VFRCs) for COVID-19 and Future Rapidly Emerging Infectious Diseases
NSF/MCB-BSF:哨兵:针对 COVID-19 和未来快速出现的传染病的病毒第一反应细胞 (VFRC)
- 批准号:
2116037 - 财政年份:2021
- 资助金额:
$ 90.15万 - 项目类别:
Continuing Grant