Combinatorics, Representations, and Catalan Theory
组合学、表示法和加泰罗尼亚理论
基本信息
- 批准号:1953781
- 负责人:
- 金额:$ 12.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetric function theory is an area of mathematical research which has produced an abundance of intricate (and sometimes conjectural) identities, many of which are very difficult to prove. Symmetric functions have ties to geometry, representation theory, and physics, and there is a deep interplay between these areas: symmetric functions give a computational model for difficult matters in these other fields, and symmetric function identities are often best understood as shadows of deeper concepts from other areas. This project studies the algebraic and geometric underpinnings of a symmetric function problem called the Delta Conjecture. The project provides research training opportunities for undergraduate and graduate students.Quotients of the polynomial ring in n variables have classical ties to the combinatorics of permutations and the geometry of the flag variety. This project studies analogous quotients (and subspaces) of a newer ring called 'superspace' which has n commuting generators (corresponding to bosons) and n anticommuting generators (corresponding to fermions). These new algebraic objects are linked to the combinatorics of ordered set partitions (as studied by Haglund, Shimozono, and the PI) and the geometry of a variety of spanning line configurations introduced by Pawlowski and the PI. A deep conjecture of Zabrocki, and a related conjecture of Wilson and the PI, assert that (a variant of) superspace gives a representation-theoretic model for the Delta Conjecture. The PI will use the algebra and geometry of superspace to tie other areas of mathematics to the Delta Conjecture, which could lead to an illuminating proof thereof.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称函数论是数学研究的一个领域,它产生了大量复杂的(有时是抽象的)恒等式,其中许多恒等式很难证明。对称函数与几何学、表示论和物理学都有联系,并且这些领域之间有着深刻的相互作用:对称函数为这些领域中的困难问题提供了一个计算模型,而对称函数恒等式通常最好理解为其他领域更深层次概念的影子。这个项目研究对称函数问题的代数和几何基础,称为Delta猜想。该项目为本科生和研究生提供了研究培训机会。n元多项式环的商与排列组合学和标志簇的几何学有着经典的联系。该项目研究称为“超空间”的较新环的类似商(和子空间),该环具有n个可换生成元(对应于玻色子)和n个反可换生成元(对应于费米子)。这些新的代数对象被链接到组合学的有序集分区(研究由Haglund,Shimozono,和PI)和几何形状的各种跨越线配置介绍的Pawlowski和PI。Zabrocki的一个深层猜想,以及威尔逊和PI的一个相关猜想,断言超空间(的一个变体)给出了Delta猜想的表示论模型。PI将使用超空间的代数和几何将其他数学领域与Delta猜想联系起来,这可能会导致其启发性的证明。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lefschetz Theory for Exterior Algebras and Fermionic Diagonal Coinvariants
- DOI:10.1093/imrn/rnaa203
- 发表时间:2020-03
- 期刊:
- 影响因子:1
- 作者:Jongwon Kim;B. Rhoades
- 通讯作者:Jongwon Kim;B. Rhoades
Higher Specht Bases for Generalizations of the Coinvariant Ring
- DOI:10.1007/s00026-020-00516-1
- 发表时间:2020-05
- 期刊:
- 影响因子:0.5
- 作者:M. Gillespie;B. Rhoades
- 通讯作者:M. Gillespie;B. Rhoades
Set Partitions, Fermions, and Skein Relations
设置分区、费米子和绞纱关系
- DOI:10.1093/imrn/rnac110
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Kim, Jesse;Rhoades, Brendon
- 通讯作者:Rhoades, Brendon
Cyclic sieving and orbit harmonics
循环筛分和轨道谐波
- DOI:10.1007/s00209-021-02800-z
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Oh, Jaeseong;Rhoades, Brendon
- 通讯作者:Rhoades, Brendon
Haglund's conjecture for multi-t Macdonald polynomials
多重 t 麦克唐纳多项式的哈格伦德猜想
- DOI:10.1016/j.disc.2023.113360
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Lee, Seung Jin;Oh, Jaeseong;Rhoades, Brendon
- 通讯作者:Rhoades, Brendon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendon Rhoades其他文献
Superspace coinvariants and hyperplane arrangements
超空间不变量与超平面排列
- DOI:
10.1016/j.aim.2025.110185 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Angarone;Patricia Commins;Trevor Karn;Satoshi Murai;Brendon Rhoades - 通讯作者:
Brendon Rhoades
Involution matrix loci and orbit harmonics
- DOI:
10.1007/s00209-025-03736-4 - 发表时间:
2025-04-05 - 期刊:
- 影响因子:1.000
- 作者:
Jasper M. Liu;Yichen Ma;Brendon Rhoades;Hai Zhu - 通讯作者:
Hai Zhu
Brendon Rhoades的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendon Rhoades', 18)}}的其他基金
Combinatorics, Representations, and Catalan Theory
组合学、表示法和加泰罗尼亚理论
- 批准号:
1500838 - 财政年份:2015
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Combinatorics and Representation Theory
组合学和表示论
- 批准号:
1261262 - 财政年份:2012
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Combinatorics and Representation Theory
组合学和表示论
- 批准号:
1205030 - 财政年份:2011
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Combinatorics and Representation Theory
组合学和表示论
- 批准号:
1068861 - 财政年份:2011
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 12.86万 - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Continuing Grant
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Australian Laureate Fellowships
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding mental health in the UK welfare system: representations of distress among benefit claimants and implications for assessment and support
了解英国福利体系中的心理健康:福利申请人的痛苦表现以及对评估和支持的影响
- 批准号:
ES/X002101/2 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Research Grant
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 12.86万 - 项目类别:
Continuing Grant