Collaborative Research: AF: Medium: Foundations of Structured Optimization
合作研究:AF:媒介:结构化优化的基础
基本信息
- 批准号:1955039
- 负责人:
- 金额:$ 63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decade there has been a dramatic shift in how large-scale optimization problems are tackled. Whether training sophisticated machine-learning models, finding patterns in massive data sets, or tuning parameters in recommendation systems, increasingly data scientists apply simple iterative methods to solve complex optimization problems. These popular methods, e.g. variants of gradient descent, often ignore problem structure in favor of requiring additional expensive resources of time, energy, and tuning. However, broad classes of structure often permeate modern optimization problems, whether it be network structure of popular machine-learning models, the sparsity of datasets, or the low-dimensional structure of learning problems. The primary goal of this project is to provide new mathematical and algorithmic tools to exploit broad classes of structure in fundamental and prevalent optimization problems. This project will develop new techniques for solving structured optimization problems, address long-standing theoretical questions in algorithm design, and provide varied research, educational, and outreach activities designed to make these techniques broadly accessible and easily applied. Ultimately, this project will lay the foundations for more efficient structured optimization and large-scale data analysis.This project will focus on providing significant mathematical and algorithmic advances in the theory of optimization and the design of efficient algorithms for solving prominent structured optimization problems. The investigators will develop a broad set of general structure-aware algorithmic and mathematical techniques to obtain improved running times for pervasive optimization and machine-learning problems. The optimization problems considered in this project, including linear programming, stochastic optimization, linear system solving, nonconvex optimization and the optimization tools considered in this project, such as interior-point methods, nonlinear conjugate gradient, L-BFGS, etc., lie at the heart of some of the largest open problems in theoretical computer science, operations research, scientific computing, numerical analysis, and machine learning. Consequently, to achieve these results the PIs will combine techniques across this broad spectrum of algorithmically-minded communities and advance the state-of-the-art theory in convex analysis, spectral graph theory, iterative methods, and numerical analysis to ultimately attain a new robust toolkit for solving massive-scale structured optimization problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,大规模优化问题的解决方式发生了巨大的转变。无论是训练复杂的机器学习模型、在海量数据集中查找模式,还是调整推荐系统中的参数,越来越多的数据科学家应用简单的迭代方法来解决复杂的优化问题。这些流行的方法,例如梯度下降的变体通常会忽略问题结构,而需要额外昂贵的时间、精力和调整资源。然而,广泛的结构类别经常渗透到现代优化问题中,无论是流行的机器学习模型的网络结构、数据集的稀疏性还是学习问题的低维结构。该项目的主要目标是提供新的数学和算法工具,以利用基本和普遍优化问题中的广泛结构。该项目将开发解决结构化优化问题的新技术,解决算法设计中长期存在的理论问题,并提供各种研究、教育和推广活动,旨在使这些技术得到广泛使用和轻松应用。最终,该项目将为更有效的结构化优化和大规模数据分析奠定基础。该项目将专注于在优化理论以及解决突出的结构化优化问题的有效算法设计方面提供重大的数学和算法进展。研究人员将开发一套广泛的通用结构感知算法和数学技术,以改善普遍优化和机器学习问题的运行时间。本项目考虑的优化问题,包括线性规划、随机优化、线性系统求解、非凸优化以及本项目考虑的优化工具,如内点法、非线性共轭梯度、L-BFGS等,是理论计算机科学、运筹学、科学计算、数值分析和机器学习中一些最大的开放问题的核心。因此,为了实现这些成果,PI 将结合广泛的算法社区的技术,并推进凸分析、谱图理论、迭代方法和数值分析方面的最先进理论,最终获得解决大规模结构化优化问题的新的强大工具包。该奖项反映了 NSF 的法定使命,并通过使用 基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Bethe and Sinkhorn Permanents of Low Rank Matrices and Implications for Profile Maximum Likelihood
低秩矩阵的 Bethe 和 Sinkhorn 常量及其对轮廓最大似然的影响
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Anari, Nima;Charikar, Moses;Shiragur, Kirankumar;Sidford, Aaron
- 通讯作者:Sidford, Aaron
Semi-Random Sparse Recovery in Nearly-Linear Time
近线性时间的半随机稀疏恢复
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kelner, Jonathan;Li, Jerry;Liu, Allen X.;Sidford, Aaron;Tian, Kevin
- 通讯作者:Tian, Kevin
Large-Scale Methods for Distributionally Robust Optimization
用于分布式鲁棒优化的大规模方法
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Levy, Daniel;Carmon, Yair;Duchi, John C.;Sidford, Aaron
- 通讯作者:Sidford, Aaron
Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss
- DOI:
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Y. Carmon;A. Jambulapati;Yujia Jin;Aaron Sidford
- 通讯作者:Y. Carmon;A. Jambulapati;Yujia Jin;Aaron Sidford
ReSQueing Parallel and Private Stochastic Convex Optimization
- DOI:10.1109/focs57990.2023.00124
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Y. Carmon;A. Jambulapati;Yujia Jin;Y. Lee;Daogao Liu;Aaron Sidford;Kevin Tian
- 通讯作者:Y. Carmon;A. Jambulapati;Yujia Jin;Y. Lee;Daogao Liu;Aaron Sidford;Kevin Tian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Sidford其他文献
On computing approximate Lewis weights
关于计算近似路易斯权重
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Simon Apers;S. Gribling;Aaron Sidford - 通讯作者:
Aaron Sidford
Path Finding I :Solving Linear Programs with Õ(sqrt(rank)) Linear System Solves
路径查找 I:用 Õ(sqrt(rank)) 线性系统求解线性规划
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Y. Lee;Aaron Sidford - 通讯作者:
Aaron Sidford
Efficient Õ(n/∊) Spectral Sketches for the Laplacian and its Pseudoinverse
拉普拉斯算子及其伪逆的有效 Õ(n/∊) 谱草图
- DOI:
10.1137/1.9781611975031.159 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
A. Jambulapati;Aaron Sidford - 通讯作者:
Aaron Sidford
Smaller steps for faster algorithms : a new approach to solving linear systems
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Aaron Sidford - 通讯作者:
Aaron Sidford
A Direct $\tilde{O}(1/ε)$ Iteration Parallel Algorithm for Optimal Transport
最优传输的直接$ ilde{O}(1/ε)$迭代并行算法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Jambulapati;Aaron Sidford;Kevin Tian - 通讯作者:
Kevin Tian
Aaron Sidford的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Sidford', 18)}}的其他基金
CAREER: Theory of Fast Graph Optimization
职业:快速图优化理论
- 批准号:
1844855 - 财政年份:2019
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant














{{item.name}}会员




