Collaborative Research: CNS Core: Medium: Cross-Layer Design of Video Analytics for the Internet of Things

合作研究:CNS 核心:媒介:物联网视频分析的跨层设计

基本信息

  • 批准号:
    1955422
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The emergence of the Internet of Things (IoT) enables many new applications ranging from augmented reality and self-driving cars, to surveillance and cashier-less retail stores. These applications continuously collect video streams from IoT devices, such as sensors, cameras, and radars. They aim to understand the video content to make intelligent decisions, by running sophisticated video analytics tasks, such as counting people and recognizing license plates in the video streams. These video analytics tasks often run a collection of computing resources including IoT devices, edge clusters near the devices and the remote cloud, connected through networks with dynamic bandwidth and latency. This project will enable a high-performance video analytics framework that can support a variety of IoT applications in real-time, with high accuracy, and at scale. The key idea of this project is to enable video analytics for IoT devices by joint optimizations across application, computing, and networking. Today’s solutions often focus on separated optimization, which leads to inaccurate answers to analytical queries, inefficient use of computing resources, and performance degrades when network condition changes. This project's video analytics framework will (1) leverage both network layer information and physical information to tune the parameters in video analytics, in order to optimize task accuracy, instead of network bandwidth, latency or quality of experience, (2) allocate computing resources for analytics tasks to meet multi-dimensional task-level service-level objectives with distributed time tracking and runtime scheduling, and (3) redesign video analytics and encoding algorithms by considering the network and computing constraints. This project will build and test representative video analytics applications on top of the system to demonstrate its capability. The project will facilitate the interactions between the machine learning research community and the systems/networking research community, and result in novel algorithms and efficient networked systems for video analytics. The project will also engage underrepresented groups and undergraduates in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网(IoT)的出现支持许多新的应用,从增强现实和自动驾驶汽车,到监控和无收银员零售店。这些应用程序持续从物联网设备(如传感器、摄像头和雷达)收集视频流。他们的目标是通过运行复杂的视频分析任务,如清点人数和识别视频流中的车牌,来理解视频内容以做出智能决策。这些视频分析任务通常运行一系列计算资源,包括物联网设备、设备附近的边缘群集和远程云,这些资源通过具有动态带宽和延迟的网络连接。该项目将支持高性能视频分析框架,该框架可以实时、高精度和大规模地支持各种物联网应用。该项目的关键思想是通过跨应用、计算和网络的联合优化,为物联网设备提供视频分析。当今的解决方案往往侧重于分离优化,这导致对分析查询的回答不准确,计算资源的使用效率低下,并且当网络条件发生变化时性能会下降。该项目的视频分析框架将(1)利用网络层信息和物理信息来调整视频分析中的参数,以优化任务精度,而不是网络带宽、延迟或体验质量,(2)为分析任务分配计算资源,以通过分布式时间跟踪和运行时调度来满足多维任务级服务级别目标,以及(3)通过考虑网络和计算限制来重新设计视频分析和编码算法。该项目将在该系统上构建和测试具有代表性的视频分析应用程序,以展示其能力。该项目将促进机器学习研究界和系统/网络研究界之间的互动,并为视频分析产生新的算法和高效的联网系统。该项目还将吸引代表不足的群体和本科生参与研究。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carbink: Fault-Tolerant Far Memory
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Zhou;Hassan Wassel;Sihang Liu;Jiaqi Gao;James Mickens;Minlan Yu;Chris Kennelly;Paul Turner;David E. Culler;Henry M. Levy;A. Vahdat
  • 通讯作者:
    Yang Zhou;Hassan Wassel;Sihang Liu;Jiaqi Gao;James Mickens;Minlan Yu;Chris Kennelly;Paul Turner;David E. Culler;Henry M. Levy;A. Vahdat
MAVFI: An End-to-End Fault Analysis Framework with Anomaly Detection and Recovery for Micro Aerial Vehicles
  • DOI:
    10.23919/date56975.2023.10137246
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu-Shun Hsiao;Zishen Wan;Tianyu Jia;Radhika Ghosal;A. Raychowdhury;D. Brooks;Gu-Yeon Wei;V. Reddi
  • 通讯作者:
    Yu-Shun Hsiao;Zishen Wan;Tianyu Jia;Radhika Ghosal;A. Raychowdhury;D. Brooks;Gu-Yeon Wei;V. Reddi
A throughput-centric view of the performance of datacenter topologies
  • DOI:
    10.1145/3452296.3472913
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pooria Namyar;Sucha Supittayapornpong;Mingyang Zhang;Minlan Yu;R. Govindan
  • 通讯作者:
    Pooria Namyar;Sucha Supittayapornpong;Mingyang Zhang;Minlan Yu;R. Govindan
Jaqen: A High-Performance Switch-Native Approach for Detecting and Mitigating Volumetric DDoS Attacks with Programmable Switches
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zaoxing Liu;Hun Namkung;G. Nikolaidis;Jeongkeun Lee;Changhoon Kim;Xin Jin;V. Braverman;Minlan Yu-Minlan
  • 通讯作者:
    Zaoxing Liu;Hun Namkung;G. Nikolaidis;Jeongkeun Lee;Changhoon Kim;Xin Jin;V. Braverman;Minlan Yu-Minlan
Xatu: boosting existing DDoS detection systems using auxiliary signals
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Minlan Yu其他文献

A view of the sustainable computing landscape
  • DOI:
    10.1016/j.patter.2025.101296
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Benjamin C. Lee;David Brooks;Arthur van Benthem;Mariam Elgamal;Udit Gupta;Gage Hills;Vincent Liu;Linh Thi Xuan Phan;Benjamin Pierce;Christopher Stewart;Emma Strubell;Gu-Yeon Wei;Adam Wierman;Yuan Yao;Minlan Yu
  • 通讯作者:
    Minlan Yu
Programmable Host-Network Traffic Management
可编程主机网络流量管理
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peng Sun;Minlan Yu;M. Freedman;J. Rexford;D. Walker
  • 通讯作者:
    D. Walker
Network telemetry: towards a top-down approach
  • DOI:
    10.1145/3314212.3314215
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minlan Yu
  • 通讯作者:
    Minlan Yu
Latency Equalization : A Routing Service for Interactive Applications
延迟均衡:交互式应用程序的路由服务
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minlan Yu;M. Thottan
  • 通讯作者:
    M. Thottan
Latency Equalization as a New Network Service Primitive
延迟均衡作为新的网络服务原语
  • DOI:
    10.1109/tnet.2011.2155669
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minlan Yu;M. Thottan;Erran L. Li
  • 通讯作者:
    Erran L. Li

Minlan Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Minlan Yu', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
  • 批准号:
    2211383
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Approximation and Randomization in the Programmable Data Plane
CNS 核心:中:可编程数据平面中的近似和随机化
  • 批准号:
    2107078
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Distributed Approximate Packet Classification
NeTS:小型:协作研究:分布式近似数据包分类
  • 批准号:
    1829349
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: A Programmable Measurement Architecture for Network Operations
职业生涯:用于网络运营的可编程测量架构
  • 批准号:
    1834263
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Distributed Approximate Packet Classification
NeTS:小型:协作研究:分布式近似数据包分类
  • 批准号:
    1701923
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Distributed Approximate Packet Classification
NeTS:小型:协作研究:分布式近似数据包分类
  • 批准号:
    1618138
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: A Programmable Measurement Architecture for Network Operations
职业生涯:用于网络运营的可编程测量架构
  • 批准号:
    1701754
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: A Programmable Measurement Architecture for Network Operations
职业生涯:用于网络运营的可编程测量架构
  • 批准号:
    1453662
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
NeTS: Small: A Virtualized Network Resource Pool for Software-Defined Network Management
NeTS:小型:用于软件定义网络管理的虚拟化网络资源池
  • 批准号:
    1423505
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了