III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles

III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车

基本信息

  • 批准号:
    1955890
  • 负责人:
  • 金额:
    $ 39.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Monitoring of possible hazards and disasters are crucial for mitigating their effects on the physical environment or to humans. The unmanned Aerial Vehicles (UAVs) have been successfully used in surveillance systems, also for many other applications such as monitoring infrastructure, vegetation growth, coastline, traffic, etc. Due to the widespread applications, a higher level of intelligence and autonomy is required to ensure safety and operational efficiency. The emerging high-resolution sensors and deep learning techniques hold great promise for autonomous UAVs. However, the unprecedented scale and complexity of sensing data (such as aerial images) have presented critical computational bottlenecks requiring new concepts and enabling tools. To address these challenges, this project focuses on designing principled large-scale machine learning, edge computing systems, energy efficient algorithms and tools that are used to achieve the real-time prediction, utilize cloud and edge computing resources, advance data-driven model-based approaches, assure the safe and agile collaborative vehicles navigation. These results address the challenges in decision support and data revolution and lead to the next generation collaborative autonomous systems.The research objective of this project is to address the computational challenges in the innovative real-time and intelligent collaborative autonomous vehicles. A novel large-scale machine learning and edge computing framework is developed to integrate the emerging key computational techniques, including fast deep learning optimizations, asynchronous federated learning, cross domain deep learning model compression, hierarchical edge computing, and collaborative autonomous aerial and ground vehicles. Unlike most existing systems that perform big data analysis in central servers or clustering for offline learning, this project provides promising new directions to the real-time analysis of high-throughput sensor data by addressing the critical embedded device data analysis issues including efficiency, scalability, distributed computing, energy saving, and space reduction. The research project combines rigorous theoretical analysis and emerging application studies, and contributes to both academic research and potential commercialized products. Such unique capabilities enable new computational applications in a large number of research areas. It advances and thus extends the relationship between engineering innovation and computational analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
监测可能的危害和灾害对于减轻其对自然环境或人类的影响至关重要。无人机(UAV)已成功地用于监控系统,也用于许多其他应用,如监测基础设施,植被生长,海岸线,交通等,由于广泛的应用,需要更高水平的智能和自主性,以确保安全和运营效率。新兴的高分辨率传感器和深度学习技术为自主无人机带来了巨大的希望。然而,前所未有的规模和复杂性的传感数据(如航空图像)提出了关键的计算瓶颈,需要新的概念和使能工具。为了应对这些挑战,该项目专注于设计原则性的大规模机器学习,边缘计算系统,节能算法和工具,用于实现实时预测,利用云和边缘计算资源,推进基于数据驱动的模型方法,确保安全和敏捷的协同车辆导航。这些成果解决了决策支持和数据革命的挑战,并导致下一代协作自主系统。本项目的研究目标是解决创新的实时和智能协作自主车辆的计算挑战。开发了一种新的大规模机器学习和边缘计算框架,以集成新兴的关键计算技术,包括快速深度学习优化,异步联邦学习,跨域深度学习模型压缩,分层边缘计算以及协作自主航空和地面车辆。与大多数现有的系统,在中央服务器或集群进行大数据分析离线学习,该项目提供了有前途的新方向,通过解决关键的嵌入式设备数据分析问题,包括效率,可扩展性,分布式计算,节能和减少空间的高吞吐量传感器数据的实时分析。该研究项目结合了严格的理论分析和新兴的应用研究,有助于学术研究和潜在的商业化产品。这种独特的能力使新的计算应用在大量的研究领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fairness without Demographics through Knowledge Distillation
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junyi Chai;T. Jang;Xiaoqian Wang
  • 通讯作者:
    Junyi Chai;T. Jang;Xiaoqian Wang
"Why Not Other Classes?": Towards Class-Contrastive Back-Propagation Explanations
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yipei Wang;Xiaoqian Wang
  • 通讯作者:
    Yipei Wang;Xiaoqian Wang
Shapley Explanation Networks
  • DOI:
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Wang;Xiaoqian Wang;David I. Inouye
  • 通讯作者:
    Rui Wang;Xiaoqian Wang;David I. Inouye
Self-Supervised Fair Representation Learning without Demographics
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junyi Chai;Xiaoqian Wang
  • 通讯作者:
    Junyi Chai;Xiaoqian Wang
Multi-Robot Dynamical Source Seeking in Unknown Environments
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dengfeng Sun其他文献

Stochastic Ground-Delay-Program Planning in a Metroplex
大都市的随机地面延误程序规划
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Chen;Dengfeng Sun
  • 通讯作者:
    Dengfeng Sun
Dual Averaging with Adaptive Random Projection for Solving Evolving Distributed Optimization Problems
Supercritical CO2‐assisted synthesis of poly(acrylic acid)/Antheraea pernyi SF blend
超临界CO2辅助合成聚丙烯酸/柞蚕SF共混物
  • DOI:
    10.1002/app.22186
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Qingyan Peng;Qun Xu;Hongyan Xu;Maizhi Pang;Jianbo Li;Dengfeng Sun
  • 通讯作者:
    Dengfeng Sun
Cell Coverage of UAV Millimeter Wave Communication Network Subject to Wind
无人机毫米波通信网络受风影响的小区覆盖
  • DOI:
    10.1109/globecom38437.2019.9013420
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingchao Bao;Dengfeng Sun;Husheng Li
  • 通讯作者:
    Husheng Li
Workload evaluation of sectorized air traffic control and stream management
扇区空中交通管制和流量管理的工作量评估

Dengfeng Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dengfeng Sun', 18)}}的其他基金

CPS: Small: Collaborative Research: Dynamical-Network Evaluation and Design Tools for Strategic-to-Tactical Air Traffic Flow Management
CPS:小型:协作研究:战略到战术空中交通流量管理的动态网络评估和设计工具
  • 批准号:
    1035532
  • 财政年份:
    2010
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 39.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了