Light Modulation of Charge Transfer-Induced Spin-Transfer Processes in Single Molecules for Quantum Information Science

用于量子信息科学的单分子中电荷转移诱导的自旋转移过程的光调制

基本信息

项目摘要

In this project, funded by the Chemical Structure, Dynamics & Mechanisms B Program of the Chemistry Division, Professor Natia Frank of the Department of Chemistry at the University of Nevada-Reno is developing chemical complexes that change color on exposure to light (photochromic). These complexes also exhibit changes in magnetic properties with light. Functional materials that change magnetism, color or charge upon application of external stimuli (light, electric field, or magnetic field) are central to the development of non-volatile memory technologies for computers, spintronics devices, and sensors for quantum information science. The materials designed and developed in this research can be used as "qubits" in Quantum computing, communications, and sensors. In general, a qubit possesses at least two well-defined states that can be prepared and addressed independently. Qubits can interact with stimuli to generate an infinite number of intermediate states leading to exciting new possibilities for data processing, storage, and sensing at the quantum level. The immediate goal of this project is the creation of a generalized strategy for molecular qubits that can be controlled with light under ambient conditions to enable embedded resistive memory devices and sensors with significantly decreased energy demand. The research lies at the interface of chemistry, physics, and material science, providing multidisciplinary training to students in the STEM sciences. The research project will also serve as a platform for Community Engaged Learning and the development of modified teaching practices for increasing the success of diverse groups in the STEM fields. Community-engaged learning activities will involve research assistantships with structured mentoring activities for middle-school and high-school students and the development of new teaching strategies for diverse learners in the undergraduate classroom. The concept of coupling optically-bistable photochromic ligands to electronically-bistable metal complexes is a strategy for controlling the electronic structure and lifetime of optically-gated functional materials. Photochromic spirooxazine ligands have two electronic states that can be gated optically. When coupled to an electronically bistable cobalt semiquinone with two ground state electronic states, a four-state electronic system is generated. This coupling, a Photoisomerization Induced Spin Charge Excited State (PISCES) process, could lead to a powerful strategy for optically gating spin states. The electronic coupling between metal center and photochrome states, however, is complex, and fundamental studies towards elucidating the primary mechanism of electronic coupling are central to the expansion of this strategy towards other spin-based systems. This project will determine the fundamental electronic and structural factors that govern PISCES processes in a broad class of electronically bistable metal complexes that can serve as spin-qubits; evaluate the spin dynamics and decoherence times for optically-gated metal complexes to determine design principles for this class of spin-based qubits; and determine the effect of intermolecular interactions on PISCES processes, spin lifetimes and decoherence in nanostructured thin films and surfaces. The results of this project could provide fundamental insight into the electronic coupling parameters critical for the acceleration of low-energy demand sensor and computing applications based on quantum architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
内华达大学里诺分校化学系的Natia Frank教授在化学结构、动力学和机制B项目的资助下,正在开发一种能在光照下变色的化学复合物(光致变色)。这些配合物在光照下也表现出磁性的变化。在外部刺激(光、电场或磁场)的作用下改变磁性、颜色或电荷的功能材料对于计算机、自旋电子学设备和量子信息科学传感器的非易失性存储技术的发展至关重要。在本研究中设计和开发的材料可以用作量子计算、通信和传感器中的“量子位”。一般来说,一个量子位至少拥有两个定义良好的状态,可以独立地准备和寻址。量子比特可以与刺激相互作用,产生无限数量的中间状态,从而在量子层面上为数据处理、存储和传感带来令人兴奋的新可能性。该项目的近期目标是为分子量子位创建一种通用策略,该策略可以在环境条件下用光控制,从而使嵌入式电阻式存储设备和传感器能够显著降低能量需求。该研究位于化学,物理和材料科学的界面,为STEM科学的学生提供多学科培训。该研究项目还将作为社区参与学习和改进教学实践的发展平台,以提高不同群体在STEM领域的成功。社区参与的学习活动将包括为初中生和高中生提供结构化指导活动的研究援助,以及为本科生课堂上不同学习者开发新的教学策略。将光双稳定的光致变色配体与电子双稳定的金属配合物耦合是控制光门控功能材料电子结构和寿命的一种策略。光致变色螺恶嗪配体具有两种可被光学门控的电子态。当耦合到具有两个基态电子态的电子双稳态钴半醌时,产生一个四态电子系统。这种耦合,即光异构化诱导自旋电荷激发态(PISCES)过程,可能导致一种强大的光控自旋态策略。然而,金属中心和光色素态之间的电子耦合是复杂的,阐明电子耦合的主要机制的基础研究是将这种策略扩展到其他自旋基系统的核心。该项目将确定在一类可作为自旋量子位的电子双稳态金属配合物中控制双鱼座过程的基本电子和结构因素;评估光门控金属配合物的自旋动力学和退相干时间,以确定这类自旋基量子比特的设计原则;并确定分子间相互作用对双鱼过程、自旋寿命和纳米结构薄膜和表面退相干的影响。该项目的结果可以为基于量子架构的低能量需求传感器和计算应用加速的关键电子耦合参数提供基本见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natia Frank其他文献

Natia Frank的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Development of novel heat conduction control method on the basis of the clarification of thermal transport modulation by external electric field and charge injection
在阐明外部电场和电荷注入热传输调制的基础上开发新型热传导控制方法
  • 批准号:
    20H02080
  • 财政年份:
    2020
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Inhomogeneity and Charge Modulation in Unconventional Superconductors
非常规超导体的不均匀性和电荷调制
  • 批准号:
    1905950
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Light Modulation of Charge Transfer Processes in Inorganic-Organic Materials
无机-有机材料中电荷转移过程的光调制
  • 批准号:
    RGPIN-2017-06587
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Light Modulation of Charge Transfer Processes in Inorganic-Organic Materials
无机-有机材料中电荷转移过程的光调制
  • 批准号:
    RGPIN-2017-06587
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Light Modulation of Charge Transfer Processes in Inorganic-Organic Materials
无机-有机材料中电荷转移过程的光调制
  • 批准号:
    RGPIN-2017-06587
  • 财政年份:
    2017
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Grants Program - Individual
Electric field control of magnetic phases via lattice and charge modulation and its underlying mechanisms
通过晶格和电荷调制对磁相进行电场控制及其基本机制
  • 批准号:
    26630303
  • 财政年份:
    2014
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Investigating the Effects of Charge Carrier Modulation in the Development of Ferromagnetic Order in Semiconducting Oxides
研究载流子调制对半导体氧化物铁磁有序发展的影响
  • 批准号:
    1006381
  • 财政年份:
    2010
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
GOALI: A Novel Field-Induced Charge-Separation Laser (FICSL) for Ultra High-Speed High-Efficiency Modulation
GOALI:一种用于超高速高效调制的新型场致电荷分离激光器 (FICSL)
  • 批准号:
    0925191
  • 财政年份:
    2009
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Radical-Containing Block Copolymers: Microphase Separation and Charge Storage/Transport Modulation in the Organic Thin Film Devices
含自由基的嵌段共聚物:有机薄膜器件中的微相分离和电荷存储/传输调制
  • 批准号:
    21750129
  • 财政年份:
    2009
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Interrelation between charge- and spin-density modulation in high-Tc superconductors
高温超导体中电荷和自旋密度调制之间的相互关系
  • 批准号:
    19540358
  • 财政年份:
    2007
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了