Cornell 7th Conference on Analysis, Probability, and Mathematical Physics on Fractals

康奈尔大学第七届分形分析、概率和数学物理会议

基本信息

  • 批准号:
    2000148
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The 7th Conference on Analysis, Probability and Mathematical Physics on Fractals will be held at Cornell University Mathematics Department from June 9-13, 2020. The main objective of this conference is to bring together a broad range of researchers in Analysis, Mathematical Physics, Probability on Fractals and other research areas for the purpose of scientific exchange, planning of new projects, and education and training of entering researchers. These conferences have been held every three years starting in 2002. The five-day meeting will be structured in three parts: half-hour talks in the mornings by leading researchers in the field to describe recent important advances; mini-courses in the early afternoons to enable advanced undergraduates, graduate students, and researchers from related fields to learn some of the foundations of the area and discuss important open problems, and 20-minute talks in parallel sessions in the late afternoons to allow all attendees to present their research. A large number of early-career researchers, including members of underrepresented groups and undergraduate students, from both the Cornell SPUR and University of Connecticut REU programs, are expected to benefit from these courses. A number of applied mathematicians and theoretical physicists attend these conferences, so the conference will help foster the growing interactions between the mathematics and physics communities with interests in these areas.There are many ways in which fractals appear in current mathematical research. The topics of this conference are those where the underlying space is fractal, and the subjects studied include the analogs of differential equations, random processes and models of physical interactions taking place on these fractal spaces. Due to the pioneering work of Barlow, Perkins, Bass, Kusuoka, Zhou and Kigami there is a well-established, rigorous mathematical framework for discussing such problems. This conference is expected to expand to new directions of research, including new trends in potential, geometric and probabilistic analysis on non-smooth and fractal spaces. The conference website ishttps://math.cornell.edu/7th-cornell-conference-analysis-probability-and-mathematical-physics-fractalsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第七届分形分析,概率和数学物理会议将于2020年6月9日至13日在康奈尔大学数学系举行。本次会议的主要目标是汇集分析,数学物理,分形概率和其他研究领域的广泛研究人员,以进行科学交流,规划新项目,以及教育和培训进入研究人员。从2002年开始,这些会议每三年举行一次。为期五天的会议将分为三个部分:上午由该领域的主要研究人员进行半小时的会谈,介绍最近的重要进展;下午早些时候的迷你课程,使高级本科生,研究生和相关领域的研究人员能够学习该领域的一些基础知识,并讨论重要的开放问题,在下午晚些时候的平行会议上进行20分钟的演讲,让所有与会者介绍他们的研究。大量的早期职业研究人员,包括代表性不足的群体和本科生的成员,从康奈尔大学SPUR和康涅狄格大学REU计划,预计将受益于这些课程。许多应用数学家和理论物理学家参加这些会议,因此会议将有助于促进数学和物理界在这些领域的兴趣之间不断增长的互动。分形在当前数学研究中有很多方式。本次会议的主题是那些潜在的空间是分形的,研究的主题包括微分方程,随机过程和模型的物理相互作用发生在这些分形空间的类似物。由于开创性的工作巴洛,帕金斯,巴斯,Kusuoka,周和Kigami有一个完善的,严格的数学框架来讨论这些问题。本次会议预计将扩大到新的研究方向,包括潜在的新趋势,几何和概率分析非光滑和分形空间。会议网站ishttps:math.cornell.edu/7th-cornell-conference-analysis-probability-and-mathematical-physics-fractalsThis奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ravi Ramakrishna其他文献

Deforming an Even Representation II, Raising the Level☆
  • DOI:
    10.1006/jnth.1998.2252
  • 发表时间:
    1998-09
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Ravi Ramakrishna
  • 通讯作者:
    Ravi Ramakrishna
Cutting towers of number fields
数域切割塔
  • DOI:
    10.1007/s40316-021-00156-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Hajir;Christian Maire;Ravi Ramakrishna
  • 通讯作者:
    Ravi Ramakrishna
sgn(ap) and Isogeny Classes of Elliptic Curves
sgn(ap) 和椭圆曲线的同源类
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Lee;Ravi Ramakrishna
  • 通讯作者:
    Ravi Ramakrishna
Constructing Galois Representations with Very Large Image
  • DOI:
    10.4153/cjm-2008-009-7
  • 发表时间:
    2008-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ravi Ramakrishna
  • 通讯作者:
    Ravi Ramakrishna
On Ozaki’s theorem realizing prescribed p-groups as p-class tower groups
论尾崎定理的实现规定
  • DOI:
    10.2140/ant.2024.18.771
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Hajir;Christian Maire;Ravi Ramakrishna
  • 通讯作者:
    Ravi Ramakrishna

Ravi Ramakrishna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ravi Ramakrishna', 18)}}的其他基金

Algebra 2022 and Beyond
代数 2022 年及以后
  • 批准号:
    2154051
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Upstate Number Theory Conference
合作研究:北部数论会议
  • 批准号:
    1902055
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Upstate New York Number Theory Conference
合作研究:纽约州北部数论会议
  • 批准号:
    1100298
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EMSW21-MCTP: The Summer Mathematics Institute at Cornell
EMSW21-MCTP:康奈尔大学夏季数学研究所
  • 批准号:
    0739338
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Variation of Selmer Groups
Selmer 群的变体
  • 批准号:
    0400232
  • 财政年份:
    2004
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Galois Representations and Arithmetic Questions
伽罗瓦表示法和算术问题
  • 批准号:
    0102173
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

7th Northeast Regional Conference on Complex Systems (NERCCS-7); Potsdam New York; 20-22 March 2024
第七届东北地区复杂系统会议(NERCCS-7);
  • 批准号:
    2406593
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: 7th Biennial Structural Geology and Tectonics Forum at WWU
会议:WWU 第七届双年度构造地质学和构造论坛
  • 批准号:
    2416387
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: 7th Pan American Plant Membrane Biology Workshop, Merida, Mexico, June 18-21 2023
会议:第七届泛美植物膜生物学研讨会,墨西哥梅里达,2023 年 6 月 18-21 日
  • 批准号:
    2328521
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Participant Support for 7th International Conference on Advanced Nanoparticle Generation and Excitation by Lasers in Liquids (ANGEL); Charlottesville, Virginia; 26-31 May 2024
第七届液体中激光产生和激发高级纳米粒子国际会议 (ANGEL) 的与会者支持;
  • 批准号:
    2348099
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RUNX1 Research Program 7th Annual Scientific Conference and Patient Meeting
RUNX1 研究计划第七届年度科学会议和患者会议
  • 批准号:
    10753420
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Conference: 7th International Volvox Conference
会议:第七届国际Volvox会议
  • 批准号:
    2310202
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Conference: 7th Eastern Conference on Mathematical Finance
会议:第七届东部数学金融会议
  • 批准号:
    2319419
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Enhancing Diversity and Addressing Disparities at the 7th Cancer Cachexia Conference
第七届癌症恶病质会议增强多样性并解决差异
  • 批准号:
    10827795
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
Conference: Participant Support for The 7th World Congress on Integrated Computational Materials Engineering (ICME); Orlando, Florida; 21-25 May 2023
会议:第七届世界集成计算材料工程大会(ICME)与会者支持;
  • 批准号:
    2316628
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
The 7th XANTHOMONAS GENOMICS CONFERENCE
第七届黄单胞菌基因组学会议
  • 批准号:
    2020601
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了