Collaborative Research: Deep-sequencing analysis of edited metabolic pathways to uncover, model, and overcome the epistatic constraints upon optimization

合作研究:对编辑后的代谢途径进行深度测序分析,以发现、建模和克服优化时的上位限制

基本信息

项目摘要

Biological systems are inherently complex, composed of many interacting molecules. Even with knowledge of the properties of each individual component, these interactions create a challenge for predicting how changing one enzyme will affect the performance of the whole pathway and the growth of the organism. While synthetic biology has the potential to address certain critical national challenges, progress is hampered by a lack of mathematical models that can be used to guide the optimization of complex biological systems. This project works to optimize the mechanisms that incorporate carbon gas into cell material in order to develop an efficient organism for generating products such as fuels or pigments. The results of the experiments will then yield a computational model capable of predicting the effects of novel combinations of genes. This project will directly lead to specific improvements in an important biotechnological platform, while simultaneously demonstrating a generic approach to using computational biology to efficiently apply the power of genome editing to a variety of synthetic biology challenges. The project also will develop and disseminate computational tools via websites, publications, workshops, and classes that will make it easier for students and researchers to simulate and analyze metabolic networks to learn about fundamental quantitative concepts that underlie their function, and provide interdisciplinary training for undergraduates, graduate students, and postdoctoral fellows. Epistasis represents a critical challenge to optimizing biological systems. When mutational effects upon growth or product generation depend on the genetic background, assessing performance across the entire parameter space of any system of realistic size quickly becomes impossible. There is an immediate need for two linked developments: empirical techniques that can rapidly generate and assess rational, combinatorial variants, and kinetic modeling techniques to incorporate these data and to make predictions. This project will use this novel approach to optimize the function of the high-efficiency ribulose monophosphate (RuMP) pathway that the team has successfully introduced into the model methanol-consuming organism, Methylobacterium extorquens. In this project, gene editing of a plasmid-encoded suite of enzymes will be performed along with deep sequencing to rapidly assess the fitnesses of a quarter-million genotypes with combinatorial variation in nine dimensions of expression. The resulting epistasis data, combined with direct measurement of intracellular metabolite concentrations for select variant combinations, will be used to infer the numerous parameter values in the kinetic model, which then will be utilized to predict which regions of parameter space would be more or less flexible. These parameter spaces will be targeted and compared in a second round of editing, experimentation and evaluation. This project is funded by the Systems and Synthetic Biology Program in the Division of Molecular and Cellular Biosciences.
生物系统本质上是复杂的,由许多相互作用的分子组成。即使了解每个单独成分的特性,这些相互作用也给预测改变一种酶将如何影响整个途径的性能和生物体的生长带来了挑战。虽然合成生物学有潜力解决某些关键的国家挑战,但由于缺乏可用于指导复杂生物系统优化的数学模型,进展受到阻碍。该项目致力于优化将碳气体纳入电池材料的机制,以开发一种有效的生物体来生产燃料或颜料等产品。实验结果将产生一个能够预测新基因组合效果的计算模型。该项目将直接导致重要生物技术平台的具体改进,同时展示使用计算生物学有效地将基因组编辑的力量应用于各种合成生物学挑战的通用方法。该项目还将通过网站、出版物、研讨会和课程开发和传播计算工具,使学生和研究人员更容易模拟和分析代谢网络,以了解其功能背后的基本定量概念,并为本科生、研究生和博士后提供跨学科培训。 上位性是优化生物系统的一个关键挑战。当突变对生长或产物生成的影响取决于遗传背景时,评估任何实际规模系统的整个参数空间的性能很快就变得不可能。迫切需要两个相互关联的发展:可以快速生成和评估理性组合变体的经验技术,以及整合这些数据并做出预测的动力学建模技术。该项目将利用这种新颖的方法来优化高效单磷酸核酮糖(RuMP)途径的功能,该团队已成功将其引入模型消耗甲醇的生物体——扭扭甲基杆菌中。在该项目中,将对质粒编码的酶套件进行基因编辑,并进行深度测序,以快速评估 25 万个基因型在九个表达维度上具有组合变异的适用性。 由此产生的上位性数据,与选择变体组合的细胞内代谢物浓度的直接测量相结合,将用于推断动力学模型中的众多参数值,然后将其用于预测参数空间的哪些区域或多或少具有灵活性。 这些参数空间将在第二轮编辑、实验和评估中进行针对性和比较。该项目由分子和细胞生物科学部的系统和合成生物学计划资助。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Genetic Context Significantly Influences the Maintenance and Evolution of Degenerate Pathways.
  • DOI:
    10.1093/gbe/evab082
  • 发表时间:
    2021-06-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Bruger EL;Chubiz LM;Rojas Echenique JI;Renshaw CJ;Espericueta NV;Draghi JA;Marx CJ
  • 通讯作者:
    Marx CJ
Asymmetric Evolvability Leads to Specialization without Trade-Offs
  • DOI:
    10.1086/713913
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Draghi, Jeremy A.
  • 通讯作者:
    Draghi, Jeremy A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Draghi其他文献

Jeremy Draghi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Draghi', 18)}}的其他基金

Limits to Evolvability Define the Maximal Sustainable Niche of Generalists
进化性的限制定义了通才的最大可持续利基
  • 批准号:
    2147101
  • 财政年份:
    2022
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Deep-sequencing analysis of edited metabolic pathways to uncover, model, and overcome the epistatic constraints upon optimization
合作研究:对编辑后的代谢途径进行深度测序分析,以发现、建模和克服优化时的上位限制
  • 批准号:
    1714550
  • 财政年份:
    2017
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341426
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341424
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
  • 批准号:
    2341425
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403089
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333101
  • 财政年份:
    2024
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 17.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了