CDS&E: Systematic Exploration of the High Entropy Alloy Space through High-Dimensional Thermodynamic Modeling from High-Throughput Computations and Experimental Data

CDS

基本信息

  • 批准号:
    2001411
  • 负责人:
  • 金额:
    $ 37.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Nontechnical summaryThe field of materials science has been captivated by the discovery of a class of alloys known as "high entropy" alloys, which are characterized by the unexpected stabilization of simple crystal structures through the combination of a large number of different elements in comparable amounts. The discovery and design of such alloys demand a detailed knowledge of the thermodynamic factors governing stability in a very high dimensional composition space with potentially many competing crystal structures. This complexity tests the limits of current thermodynamic modeling capabilities due to the sheer number of input data needed and of parameters entering the model. The project addresses this by combining (i) large-scale meta-databases of experimentally-derived thermodynamic models with (ii) thermodynamic data from high-throughput quantum-mechanical calculations, using formal statistical and active machine learning techniques. The end product of this effort is an openly distributed large-scale encompassing thermodynamic model that can be queried in a high-dimensional compositional space and that returns structural stability information as interactive tridimensional cross-sections, or as composition- and temperature-dependent thermodynamic properties. As this space of possible alloys is so vast compared to the number of known high-entropy alloys, the potential for discoveries of novel alloys through this tool is significant and this could broadly impact numerous engineering applications where capabilities are limited by materials properties.Technical summaryThe project leverages and integrates two recent developments from the PI's group: (i) a search engine (the Thermodynamic DataBase DataBase or TDBDB), that indexes all available experimentally-derived thermodynamic data electronically available in standardized format in the scientific literature; (ii) a suite of software tools (the Alloy Theoretic Automated Toolkit or ATAT) that streamlines the generation of thermodynamic databases from ab initio data. This hybrid approach aims to combine the distinct advantage of state-of-the-art experimental and computational methods, namely, the higher accuracy of the former and the high-throughput nature of the latter.Active machine learning and statistical techniques are used to (i) target the exploration of promising composition regions likely to form solid solutions with simple crystal structures and (ii) develop efficient statistical mechanics models of non-stoichiometric solids that require few ab initio inputs, thus enabling "high-throughput" operation. Whereas existing computational high-throughput efforts primarily focus on the properties of defect-free stoichiometric compounds at absolute zero, this project targets, at all temperatures, the broader range of materials including disordered alloys with possible short-range order and ordered alloys with possible point defects. This demands efficient statistical mechanical models of (i) short-range order, (ii) strongly anharmonic phases and (iii) magnetic ordering, each of which requiring fewer ab initio input than existing brute force methods, by exploiting both known and data-mined trends.The data and tools devised during this project are expected to have broader impacts: virtually all engineering materials are nonstoichiometric alloys whose properties are tuned by controlled additions of numerous components (with high entropy alloys only representing an extreme example). Hence, this resource could greatly facilitate materials discovery and optimization by augmenting existing computational high-throughput efforts that currently only target ordered compounds at absolute zero. The broad compositional gamut covered also enables applications that could range from identifying glass-forming metallic alloys to determining possible exoplanet core compositions and structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述材料科学领域被一类被称为高熵合金的合金的发现所吸引,这种合金的特点是通过大量不同元素的组合以相当的量意外地稳定简单的晶体结构。这类合金的发现和设计需要详细了解控制高维组成空间稳定性的热力学因素,该空间可能有许多相互竞争的晶体结构。这种复杂性测试了当前热力学建模能力的极限,这是由于所需的输入数据和进入模型的参数的绝对数量。该项目通过使用正式统计和主动机器学习技术,将(I)实验得出的热力学模型的大型元数据库与(Ii)来自高通量量子力学计算的热力学数据相结合来解决这一问题。这项工作的最终成果是一个开放分布的大范围包罗万象的热力学模型,该模型可以在高维组成空间中进行查询,并返回作为交互三维横截面的结构稳定性信息,或者作为依赖于组成和温度的热力学性质。由于与已知高熵合金的数量相比,这一可能的合金空间是如此之大,通过该工具发现新合金的潜力是巨大的,这可能会广泛地影响许多能力受到材料性质限制的工程应用。该项目利用并集成了PI小组的两个最新发展:(I)搜索引擎(热力学数据库或TDBDB),其索引所有可用的、以标准格式在科学文献中电子获得的实验得出的热力学数据;(Ii)一套软件工具(合金理论自动化工具包或ATAT),其简化了从从头算数据生成热力学数据库的过程。这种混合方法旨在结合最先进的实验和计算方法的独特优势,即前者的较高精度和后者的高通量特性。主动机器学习和统计技术被用于(I)针对可能形成具有简单晶体结构的固体溶液的有前景的组成区域的探索,以及(Ii)开发需要很少从头计算输入的非化学计量固体的高效统计力学模型,从而实现高通量操作。虽然现有的计算高通量工作主要集中在绝对零度下无缺陷的化学计量化合物的性质上,但该项目的目标是在所有温度下更广泛的材料范围,包括可能具有短程有序的无序合金和可能具有点缺陷的有序合金。这就需要(I)短程有序,(Ii)强非谐相和(Iii)磁有序的有效统计力学模型,通过利用已知的和数据挖掘的趋势,每个模型都需要比现有的蛮力方法更少的从头算输入。在这个项目中设计的数据和工具预计将产生更广泛的影响:几乎所有的工程材料都是非化学计量合金,其性能可以通过控制添加大量组分来调整(高熵合金仅代表一个极端例子)。因此,这种资源可以通过增加现有的计算高通量努力,极大地促进材料发现和优化,目前这些努力只针对绝对零度的有序化合物。该奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为是值得支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models
利用线性和非线性簇扩展模型系统分析难熔高熵合金的相稳定性
  • DOI:
    10.1016/j.actamat.2021.117269
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Nataraj, Chiraag;Borda, Edgar Josué;van de Walle, Axel;Samanta, Amit
  • 通讯作者:
    Samanta, Amit
A simple method for computing the formation free energies of metal oxides
  • DOI:
    10.1016/j.commatsci.2021.110692
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hantong Chen;Qi-Jun Hong;S. Ushakov;A. Navrotsky;A. Walle
  • 通讯作者:
    Hantong Chen;Qi-Jun Hong;S. Ushakov;A. Navrotsky;A. Walle
Rapid screening of high-throughput ground state predictions
Temperature-Dependent Configurational Entropy Calculations for Refractory High-Entropy Alloys
  • DOI:
    10.1007/s11669-021-00879-9
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Chiraag M Nataraj;A. van de Walle;A. Samanta
  • 通讯作者:
    Chiraag M Nataraj;A. van de Walle;A. Samanta
Interactive Exploration of High-Dimensional Phase Diagrams
高维相图的交互式探索
  • DOI:
    10.1007/s11837-022-05314-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    van de Walle, Axel;Chen, Hantong;Liu, Helena;Nataraj, Chiraag;Samanta, Sayan;Zhu, Siya;Arroyave, Raymundo
  • 通讯作者:
    Arroyave, Raymundo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Axel van de Walle其他文献

Soliquidy: a descriptor for atomic geometrical confusion
纯液体:原子几何混乱的描述符
  • DOI:
    10.1038/s41524-025-01529-1
  • 发表时间:
    2025-02-19
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Hagen Eckert;Sebastian A. Kube;Simon Divilov;Asa Guest;Adam C. Zettel;David Hicks;Sean D. Griesemer;Nico Hotz;Xiomara Campilongo;Siya Zhu;Axel van de Walle;Jan Schroers;Stefano Curtarolo
  • 通讯作者:
    Stefano Curtarolo
Analytically differentiable metrics for phase stability
  • DOI:
    10.1016/j.calphad.2024.102705
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Courtney Kunselman;Brandon Bocklund;Axel van de Walle;Richard Otis;Raymundo Arróyave
  • 通讯作者:
    Raymundo Arróyave

Axel van de Walle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Axel van de Walle', 18)}}的其他基金

Collaborative Research: Rare Earth Materials Under Extreme Conditions
合作研究:极端条件下的稀土材料
  • 批准号:
    2209027
  • 财政年份:
    2022
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Collaborative research: experimental and computational study of structure and thermodynamics of rare earth oxides above 2000 C
合作研究:2000℃以上稀土氧化物结构和热力学的实验和计算研究
  • 批准号:
    1835939
  • 财政年份:
    2018
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: experimental and computational study of structure and thermodynamics of rare earth oxides above 2000 C
SusChEM:合作研究:2000℃以上稀土氧化物结构和热力学的实验和计算研究
  • 批准号:
    1505657
  • 财政年份:
    2015
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
CAREER: Extending the lattice stability framework in ab initio alloy thermodynamics
职业:扩展从头算合金热力学中的晶格稳定性框架
  • 批准号:
    1154895
  • 财政年份:
    2011
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Continuing Grant
CAREER: Extending the lattice stability framework in ab initio alloy thermodynamics
职业:扩展从头算合金热力学中的晶格稳定性框架
  • 批准号:
    0953378
  • 财政年份:
    2010
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Continuing Grant
The Generalized Cluster Expansion: A Tool for Representing Structure-Property Relationships
广义簇展开:表示结构-性质关系的工具
  • 批准号:
    0907669
  • 财政年份:
    2009
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant

相似海外基金

A Systematic Exploration of when Elements of Episodic Memory Begin to Emerge in Young Children
对幼儿情景记忆元素何时开始出现的系统探索
  • 批准号:
    2743031
  • 财政年份:
    2022
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Studentship
Exploration of systematic effects in deep integrations of the Herschel/SPIRE spectrometer.
探索 Herschel/SPIRE 光谱仪深度集成的系统效应。
  • 批准号:
    562984-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 37.97万
  • 项目类别:
    University Undergraduate Student Research Awards
Effects of the Engagement, Exploration, Explanation, Elaboration, and Evaluation Instructional Model: Systematic Review and Innovation Through New Meta-Analysis Methodology
参与、探索、解释、阐述和评估教学模式的效果:通过新的荟萃分析方法进行系统回顾和创新
  • 批准号:
    2000672
  • 财政年份:
    2020
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Continuing Grant
A Large-scale Systematic Exploration of the Impact of Culturally Competent Biology Education
对文化能力生物学教育影响的大规模系统探索
  • 批准号:
    1818659
  • 财政年份:
    2018
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Quantitative exploration of AF patients' knowledge gaps: a systematic review and meta-analysis
房颤患者知识差距的定量探索:系统评价和荟萃分析
  • 批准号:
    391548
  • 财政年份:
    2018
  • 资助金额:
    $ 37.97万
  • 项目类别:
Exploration of the non-systematic organizing principle of the brain that coexists with and share the same tissue space with the systematic organizing priciple
与系统组织原理共存并共享同一组织空间的大脑非系统组织原理的探索
  • 批准号:
    16KT0174
  • 财政年份:
    2016
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discovery of neuroproteomic determinants of pain transmission using differential and systematic proteome exploration strategies
使用差异和系统蛋白质组探索策略发现疼痛传递的神经蛋白质组决定因素
  • 批准号:
    386637-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Discovery Grants Program - Individual
A systematic exploration Method for the Development of metastable Metal Halides by Thermal Detection
热探测开发亚稳态金属卤化物的系统探索方法
  • 批准号:
    262325214
  • 财政年份:
    2014
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Research Grants
Discovery of neuroproteomic determinants of pain transmission using differential and systematic proteome exploration strategies
使用差异和系统蛋白质组探索策略发现疼痛传递的神经蛋白质组决定因素
  • 批准号:
    386637-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Discovery Grants Program - Individual
Systematic experimental exploration of nonlinear structures with control-based continuation
基于控制延拓的非线性结构的系统实验探索
  • 批准号:
    EP/K032739/1
  • 财政年份:
    2013
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了