CDS&E: Systematic Exploration of the High Entropy Alloy Space through High-Dimensional Thermodynamic Modeling from High-Throughput Computations and Experimental Data

CDS

基本信息

  • 批准号:
    2001411
  • 负责人:
  • 金额:
    $ 37.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Nontechnical summaryThe field of materials science has been captivated by the discovery of a class of alloys known as "high entropy" alloys, which are characterized by the unexpected stabilization of simple crystal structures through the combination of a large number of different elements in comparable amounts. The discovery and design of such alloys demand a detailed knowledge of the thermodynamic factors governing stability in a very high dimensional composition space with potentially many competing crystal structures. This complexity tests the limits of current thermodynamic modeling capabilities due to the sheer number of input data needed and of parameters entering the model. The project addresses this by combining (i) large-scale meta-databases of experimentally-derived thermodynamic models with (ii) thermodynamic data from high-throughput quantum-mechanical calculations, using formal statistical and active machine learning techniques. The end product of this effort is an openly distributed large-scale encompassing thermodynamic model that can be queried in a high-dimensional compositional space and that returns structural stability information as interactive tridimensional cross-sections, or as composition- and temperature-dependent thermodynamic properties. As this space of possible alloys is so vast compared to the number of known high-entropy alloys, the potential for discoveries of novel alloys through this tool is significant and this could broadly impact numerous engineering applications where capabilities are limited by materials properties.Technical summaryThe project leverages and integrates two recent developments from the PI's group: (i) a search engine (the Thermodynamic DataBase DataBase or TDBDB), that indexes all available experimentally-derived thermodynamic data electronically available in standardized format in the scientific literature; (ii) a suite of software tools (the Alloy Theoretic Automated Toolkit or ATAT) that streamlines the generation of thermodynamic databases from ab initio data. This hybrid approach aims to combine the distinct advantage of state-of-the-art experimental and computational methods, namely, the higher accuracy of the former and the high-throughput nature of the latter.Active machine learning and statistical techniques are used to (i) target the exploration of promising composition regions likely to form solid solutions with simple crystal structures and (ii) develop efficient statistical mechanics models of non-stoichiometric solids that require few ab initio inputs, thus enabling "high-throughput" operation. Whereas existing computational high-throughput efforts primarily focus on the properties of defect-free stoichiometric compounds at absolute zero, this project targets, at all temperatures, the broader range of materials including disordered alloys with possible short-range order and ordered alloys with possible point defects. This demands efficient statistical mechanical models of (i) short-range order, (ii) strongly anharmonic phases and (iii) magnetic ordering, each of which requiring fewer ab initio input than existing brute force methods, by exploiting both known and data-mined trends.The data and tools devised during this project are expected to have broader impacts: virtually all engineering materials are nonstoichiometric alloys whose properties are tuned by controlled additions of numerous components (with high entropy alloys only representing an extreme example). Hence, this resource could greatly facilitate materials discovery and optimization by augmenting existing computational high-throughput efforts that currently only target ordered compounds at absolute zero. The broad compositional gamut covered also enables applications that could range from identifying glass-forming metallic alloys to determining possible exoplanet core compositions and structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结材料科学领域已通过发现一类称为“高熵”合金的合金来吸引,这些合金的特征是通过大量不同元素(相当数量)结合了简单的晶体结构意外稳定。此类合金的发现和设计要求对在很高的尺寸组成空间中控制稳定性的热力学因素有详细的了解,并具有许多竞争晶体结构。由于所需的输入数据数量庞大,并且输入模型的参数,这种复杂性测试了当前热力学建模功能的极限。该项目通过使用正式的统计和主动的机器学习技术组合(i)(i)(i)实验衍生的热力学模型的大规模元数据库与(ii)来自高通量量子力学计算的热力学数据。这项工作的最终产品是一个公开分布的大规模的热力学模型,可以在高维成分空间中查询,并将结构稳定性信息作为交互式三维跨区域,或作为组成和温度依赖性的热力学特性。 As this space of possible alloys is so vast compared to the number of known high-entropy alloys, the potential for discoveries of novel alloys through this tool is significant and this could broadly impact numerous engineering applications where capabilities are limited by materials properties.Technical summaryThe project leverages and integrates two recent developments from the PI's group: (i) a search engine (the Thermodynamic DataBase DataBase or TDBDB), that indexes所有可用的实验衍生的热力学数据在科学文献中以标准化的格式获得; (ii)一套软件工具(合金理论自动化工具包或ATAT),该软件工具从AB INLIO算数据中简化了热力学数据库的生成。这种混合方法旨在结合最先进的实验和计算方法的独特优势,即,前者的较高准确性以及后者的高通量性质。主动的机器学习和统计技术用于(i)针对探索有前途的固定解决方案可能会形成简单的固体结构和统计学模型(II)的良好构成区域的探索。输入,从而实现“高通量”操作。尽管现有的计算高通量工作主要集中于绝对零的无缺陷化学计量化合物的性能,但该项目在所有温度下都针对更广泛的材料,包括可能的短距离订单,并订购了可能点缺陷的合金。这需要(i)(i)短期顺序的有效统计机械模型,(ii)强烈的非谐波阶段和(iii)磁性排序,每种磁性顺序比现有的蛮力方法所需的每个趋势较少,而不是现有的蛮力方法,通过利用已知的趋势和数据迁移趋势。该项目在该项目中均具有更广泛的影响。许多组件(具有高熵合金仅代表极端示例)。因此,通过扩大现有的计算高通量工作,目前仅针对绝对零以有序化合物为目标,该资源可以极大地促进材料发现和优化。涵盖的广泛构图还可以实现,从识别形成玻璃的金属合金到确定可能的外部外部核心组成和结构的应用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A systematic analysis of phase stability in refractory high entropy alloys utilizing linear and non-linear cluster expansion models
利用线性和非线性簇扩展模型系统分析难熔高熵合金的相稳定性
  • DOI:
    10.1016/j.actamat.2021.117269
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Nataraj, Chiraag;Borda, Edgar Josué;van de Walle, Axel;Samanta, Amit
  • 通讯作者:
    Samanta, Amit
A simple method for computing the formation free energies of metal oxides
  • DOI:
    10.1016/j.commatsci.2021.110692
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Hantong Chen;Qi-Jun Hong;S. Ushakov;A. Navrotsky;A. Walle
  • 通讯作者:
    Hantong Chen;Qi-Jun Hong;S. Ushakov;A. Navrotsky;A. Walle
Rapid screening of high-throughput ground state predictions
Temperature-Dependent Configurational Entropy Calculations for Refractory High-Entropy Alloys
  • DOI:
    10.1007/s11669-021-00879-9
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Chiraag M Nataraj;A. van de Walle;A. Samanta
  • 通讯作者:
    Chiraag M Nataraj;A. van de Walle;A. Samanta
Computational Assessment of Novel Predicted Compounds in Ni-Re Alloy System
镍铼合金体系中新型预测化合物的计算评估
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Axel van de Walle其他文献

Analytically differentiable metrics for phase stability
  • DOI:
    10.1016/j.calphad.2024.102705
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Courtney Kunselman;Brandon Bocklund;Axel van de Walle;Richard Otis;Raymundo Arróyave
  • 通讯作者:
    Raymundo Arróyave

Axel van de Walle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Axel van de Walle', 18)}}的其他基金

Collaborative Research: Rare Earth Materials Under Extreme Conditions
合作研究:极端条件下的稀土材料
  • 批准号:
    2209027
  • 财政年份:
    2022
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
Collaborative research: experimental and computational study of structure and thermodynamics of rare earth oxides above 2000 C
合作研究:2000℃以上稀土氧化物结构和热力学的实验和计算研究
  • 批准号:
    1835939
  • 财政年份:
    2018
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: experimental and computational study of structure and thermodynamics of rare earth oxides above 2000 C
SusChEM:合作研究:2000℃以上稀土氧化物结构和热力学的实验和计算研究
  • 批准号:
    1505657
  • 财政年份:
    2015
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant
CAREER: Extending the lattice stability framework in ab initio alloy thermodynamics
职业:扩展从头算合金热力学中的晶格稳定性框架
  • 批准号:
    1154895
  • 财政年份:
    2011
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Continuing Grant
CAREER: Extending the lattice stability framework in ab initio alloy thermodynamics
职业:扩展从头算合金热力学中的晶格稳定性框架
  • 批准号:
    0953378
  • 财政年份:
    2010
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Continuing Grant
The Generalized Cluster Expansion: A Tool for Representing Structure-Property Relationships
广义簇展开:表示结构-性质关系的工具
  • 批准号:
    0907669
  • 财政年份:
    2009
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Re-Os同位素在湖相油气系统的应用——以冀中坳陷束鹿西斜坡潜山为例
  • 批准号:
    42302181
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
电磁勘探中大型多位移多右端向量线性系统的位移-块Krylov子空间方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
基于相对速度单元坐标系的深海拖曳线列阵动力学建模及其形态稳定控制
  • 批准号:
    51909145
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于天线结构和特性协同优化的井下高性能RFID系统研究
  • 批准号:
    41802194
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
页岩气勘探开发投资决策的仿真优化方法研究
  • 批准号:
    71801223
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

mAnaging siCkle CELl disease through incReased AdopTion of hydroxyurEa in Nigeria (ACCELERATE)
在尼日利亚通过增加羟基脲的使用来控制镰状细胞病(加速)
  • 批准号:
    10638598
  • 财政年份:
    2023
  • 资助金额:
    $ 37.97万
  • 项目类别:
A Mixed Methods Exploration of Stigma, Discrimination, and Sleep Among Those on Medication for Opioid Use Disorder
混合方法探索阿片类药物使用障碍患者的耻辱、歧视和睡眠
  • 批准号:
    10590606
  • 财政年份:
    2022
  • 资助金额:
    $ 37.97万
  • 项目类别:
A Systematic Exploration of when Elements of Episodic Memory Begin to Emerge in Young Children
对幼儿情景记忆元素何时开始出现的系统探索
  • 批准号:
    2743031
  • 财政年份:
    2022
  • 资助金额:
    $ 37.97万
  • 项目类别:
    Studentship
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
  • 批准号:
    10400104
  • 财政年份:
    2021
  • 资助金额:
    $ 37.97万
  • 项目类别:
Novel Approaches to Adjusting for Population Heterogeneity and Representation in Neuroimaging Studies
神经影像研究中调整群体异质性和代表性的新方法
  • 批准号:
    10189007
  • 财政年份:
    2021
  • 资助金额:
    $ 37.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了