CRII: III: RUI: Effective Protein Characterization via Fast Exact Open Modification Searching

CRII:III:RUI:通过快速精确开放修饰搜索进行有效的蛋白质表征

基本信息

  • 批准号:
    2002321
  • 负责人:
  • 金额:
    $ 14.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-17 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Proteins form the major building blocks of cells, and protein-protein interactions provide information about cell functions. Characterizing these interactions is made possible through mass spectrometry (MS), a technique that breaks down complex biological samples into much simpler ions and measures their individual masses. Computer algorithms can then be used to interpret the output of MS experiments. The advent of tandem mass spectrometry (MS/MS), also known as shotgun proteomics, led to a huge increase in the speed with which researchers can execute proteomics experiments, which in turn has enabled the creation of massive databases containing millions of known spectra. This research will create novel algorithms that will be able to quickly identify which proteins exist in a biological sample by comparing unknown spectra from the sample against entire libraries of known spectra. Ultimately, this project will make it easier for humans to understand the molecular basis of disease and will enable personalized medicine and identifying new drugs to tackle currently incurable diseases. The goal of this project is to develop novel methods for protein characterization in MS/MS experiment results that will provide increased spectral match effectiveness while scaling to search the largest existing protein databases and beyond. The key computational component in shotgun proteomics is matching MS/MS spectra against theoretical spectra or actual spectra in spectral databases to identify possible peptides (protein sections). In essence, given a translation of the spectra to points in the Euclidean space and a chosen proximity function, the algorithmic component in the search is a nearest neighbor search algorithm. Due to the large size of spectral databases, the problem has been traditionally solved through a variety of approximate nearest neighbor search methods and a combination of vector space and probabilistic proximity measures which are often not scalable and lead to missed spectral matches. This project aims to address these limitations in two ways. First, it will develop novel filtering-based exact nearest neighbor search methods for the shifted dot-product proximity measure, which has been recently shown to outperform alternatives by accounting for spectral post translational modifications while searching for matches. The proposed filtering-based methods prune much of the search space by eliminating potential candidates without computing their proximity to the query, based on their composition and on theoretic properties of the proximity measure. Second, the project will develop effective decomposition techniques for the inherently irregular computation requirements of the proposed pruning-based search that will enable distributed methods to search the largest proteomics databases of today, and beyond. The project will result in the dissemination of the developed methods to the large computational genomics community and will involve research education of underrepresented undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质构成了细胞的主要组成部分,蛋白质与蛋白质的相互作用提供了有关细胞功能的信息。通过质谱(MS)可以表征这些相互作用,这是一种将复杂的生物样品分解为更简单的离子并测量其单个质量的技术。计算机算法可用于解释MS实验的输出。串联质谱(MS/MS)的出现,也被称为鸟枪蛋白质组学,导致研究人员执行蛋白质组学实验的速度大幅提高,这反过来又使包含数百万已知光谱的大型数据库得以创建。这项研究将创建新的算法,通过将样本中的未知光谱与整个已知光谱库进行比较,能够快速识别生物样本中存在哪些蛋白质。最终,该项目将使人类更容易理解疾病的分子基础,并将实现个性化医疗和识别新药来解决目前无法治愈的疾病。该项目的目标是开发用于MS/MS实验结果中蛋白质表征的新方法,该方法将提供更高的光谱匹配效率,同时扩展到搜索最大的现有蛋白质数据库及其他数据库。鸟枪法蛋白质组学的关键计算部分是将MS/MS光谱与光谱数据库中的理论光谱或实际光谱进行匹配,以识别可能的肽(蛋白质部分)。本质上,给定光谱到欧几里德空间中的点的平移和所选择的邻近函数,搜索中的算法组件是最近邻搜索算法。由于光谱数据库的规模很大,传统上已经通过各种近似最近邻搜索方法以及向量空间和概率邻近度量的组合来解决该问题,这些方法通常不可扩展并导致错过光谱匹配。本项目旨在通过两种方式解决这些限制。首先,它将开发新的基于过滤的精确最近邻搜索方法的移位点积邻近度测量,最近已被证明优于替代方案,占光谱翻译后修饰,同时搜索匹配。所提出的基于过滤的方法修剪大部分的搜索空间,消除潜在的候选人,而不计算其接近的查询,根据其组成和接近度的理论属性。其次,该项目将开发有效的分解技术,用于拟议的基于修剪的搜索的固有不规则计算要求,使分布式方法能够搜索当今及以后最大的蛋白质组学数据库。该项目将导致开发的方法传播到大型计算基因组学社区,并将涉及代表性不足的本科生的研究教育。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective Partitioned Regression for Accurate Kidney Health Monitoring
用于准确肾脏健康监测的选择性分区回归
  • DOI:
    10.1007/s10439-024-03470-8
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Whelan, Alex;Elsayed, Ragwa;Bellofiore, Alessandro;Anastasiu, David C.
  • 通讯作者:
    Anastasiu, David C.
CosTaL: an accurate and scalable graph-based clustering algorithm for high-dimensional single-cell data analysis
  • DOI:
    10.1093/bib/bbad157
  • 发表时间:
    2023-05-05
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Li, Yijia;Nguyen, Jonathan;Arriaga, Edgar A.
  • 通讯作者:
    Arriaga, Edgar A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Anastasiu其他文献

David Anastasiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Anastasiu', 18)}}的其他基金

CRII: III: RUI: Effective Protein Characterization via Fast Exact Open Modification Searching
CRII:III:RUI:通过快速精确开放修饰搜索进行有效的蛋白质表征
  • 批准号:
    1850557
  • 财政年份:
    2019
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
  • 批准号:
    2025JJ50094
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
  • 批准号:
    JCZRYB202500652
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
  • 批准号:
    JCZRQN202501004
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
  • 批准号:
    2025JJ50319
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
  • 批准号:
    2025JJ50694
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ASPGR与MRC2双受体介导铱(III)配合物 脂质体抗肝肿瘤研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Ap-Exo III 联合模式识别构建降尿酸药 物筛选新方法的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

III: Small: RUI: Designing Structure-Phenotype Query-Retrieval and Analysis Systems for Microscopy-Based Whole Organism Studies
III:小:RUI:为基于显微镜的整个生物体研究设计结构表型查询检索和分析系统
  • 批准号:
    2401096
  • 财政年份:
    2023
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
III: Small: RUI: A Fairness Auditing Framework for Predictive Mobility Models
III:小:RUI:预测移动模型的公平性审核框架
  • 批准号:
    2304213
  • 财政年份:
    2023
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
III: Small: RUI: Finding Best Representative Phylogenetic Tree Reconciliations
III:小:RUI:寻找最佳代表性系统发育树协调
  • 批准号:
    2231150
  • 财政年份:
    2022
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
CRII: III: RUI: Multiphysics Modeling of Slope Stability in Post-Wildfire Environment
CRII:III:RUI:野火后环境中边坡稳定性的多物理场建模
  • 批准号:
    2153370
  • 财政年份:
    2022
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
III: Small: RUI: Investigating Fragmentation Rules and Improving Metabolite Identification Using Graph Grammar and Statistical Methods
III:小:RUI:使用图语法和统计方法研究断裂规则并改进代谢物识别
  • 批准号:
    2053286
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
III: Small: RUI: Collaborative Research: Modeling Pre- and Post- Conditions for Understanding Events
III:小:RUI:协作研究:为理解事件建模前后条件
  • 批准号:
    2007128
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Interagency Agreement
EAGER: III: Collaborative Research: RUI: In silico Algorithm for Assessing the Effects of Amino Acid Insertion and Deletion Mutations
EAGER:III:合作研究:RUI:用于评估氨基酸插入和缺失突变影响的计算机算法
  • 批准号:
    2031283
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
III: Small: RUI: Scalable and Iterative Statistical Testing of Multiple Hypotheses on Massive Datasets
III:小型:RUI:海量数据集上多个假设的可扩展和迭代统计检验
  • 批准号:
    2006765
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
CRII: III: RUI: Association Testing and Inversion Detection without Reference Genomes
CRII:III:RUI:无参考基因组的关联测试和倒置检测
  • 批准号:
    1947257
  • 财政年份:
    2020
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Standard Grant
CRII: III: RUI: Effective Protein Characterization via Fast Exact Open Modification Searching
CRII:III:RUI:通过快速精确开放修饰搜索进行有效的蛋白质表征
  • 批准号:
    1850557
  • 财政年份:
    2019
  • 资助金额:
    $ 14.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了