Relative Aspects of the Langlands Program, L-Functions, and Beyond Endoscopy
朗兰兹纲领、L 功能和内窥镜之外的相关方面
基本信息
- 批准号:2002579
- 负责人:
- 金额:$ 1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation of US-based researchers in the workshop "Relative Aspects of the Langlands Program, L-Functions, and Beyond Endoscopy" taking place May 25-29, 2020 at the Centre International de Rencontres Mathematiques in Marseille, France. The Langlands program in modern mathematics has been evolving with deeper ideas since its inception. This workshop will provide an overview of recent rapid progress in the relative Langlands program and foster further development by encouraging interactions between senior and junior researchers. Given the recent exciting developments, a workshop on the subject is timely and will encourage young people to enter this very active field. Langlands's principle of functoriality and the automorphic L-functions are two central themes of the Langlands program and the theory of automorphic forms. Despite more than forty years of progress and numerous breakthroughs, many questions in this program are still open and even deeper questions have arisen. The theory of endoscopy, a special but very important case of functoriality, attracted immense efforts in the past thirty years, leading to breakthroughs such as the proof of the Fundamental Lemma and the endoscopic classification of automorphic representations of classical groups. Going beyond these remarkable achievements requires new techniques and ideas. In recent years, exciting new ideas have emerged, which have the potential to renew our vision of the whole subject. The conference will focus on three main topics: (1) the relative Langlands program, (2) relations between special values of (higher) derivatives of L-functions, and (3) beyond endoscopy and possible new cases of functoriality. Details of the workshop are posted at https://conferences.cirm-math.fr/2154.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持美国研究人员参加将于2020年5月25日至29日在法国马赛国际Rencontres数学中心举行的“朗兰兹计划、l -函数和超越内窥镜的相关方面”研讨会。现代数学中的朗兰兹纲领自创立以来一直在不断发展,其思想更加深刻。本次研讨会将概述近年来有关朗兰兹项目的快速进展,并通过鼓励高级和初级研究人员之间的互动促进进一步的发展。鉴于最近令人兴奋的发展,举办一个关于这一主题的讲习班是及时的,并将鼓励年轻人进入这一非常活跃的领域。朗兰兹泛函原理和自同构l函数是朗兰兹纲领和自同构形式理论的两个中心主题。尽管四十多年来取得了许多进展和突破,但该计划仍有许多问题尚未解决,甚至出现了更深层次的问题。内窥镜理论是泛函的一个特殊而重要的例子,在过去的三十年里,它吸引了巨大的努力,导致了诸如基本引理的证明和经典群自同构表示的内窥镜分类等突破。超越这些卓越的成就需要新的技术和想法。近年来,令人兴奋的新想法出现了,它们有可能更新我们对整个主题的看法。会议将集中讨论三个主要议题:(1)相对朗兰程序,(2)l函数的(高)导数的特殊值之间的关系,以及(3)超越内窥镜和可能的泛函新情况。研讨会的详细信息发布在https://conferences.cirm-math.fr/2154.html.This上,奖励反映了美国国家科学基金会的法定使命,并通过基金会的知识价值和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ju-Lee Kim其他文献
Ju-Lee Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ju-Lee Kim', 18)}}的其他基金
Representation Theory, Number Theory, and Invariant Theory
表示论、数论和不变论
- 批准号:
1460466 - 财政年份:2015
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Representation Theory of Reductive Groups over Local Fields
局部域上的还原群表示论
- 批准号:
1100943 - 财政年份:2011
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Characters, Liftings, and Types: Investigations in p-adic Representation Theory
FRG:协作研究:特征、提升和类型:p-adic 表示理论的调查
- 批准号:
0854877 - 财政年份:2009
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
K-Types and Harmonic Analysis on p-Adic Reductive Groups
对进还原基团的 K 型和调和分析
- 批准号:
0824365 - 财政年份:2007
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
K-Types and Harmonic Analysis on p-Adic Reductive Groups
对进还原基团的 K 型和调和分析
- 批准号:
0500673 - 财政年份:2005
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Hecke Algebras, Buldings and Harmonic Analysis on p-adic Groups
Hecke 代数、Buldings 和 p-adic 群的调和分析
- 批准号:
0223829 - 财政年份:2001
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Hecke Algebras, Buldings and Harmonic Analysis on p-adic Groups
Hecke 代数、Buldings 和 p-adic 群的调和分析
- 批准号:
9970454 - 财政年份:1999
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
相似国自然基金
基于构件软件的面向可靠安全Aspects建模和一体化开发方法研究
- 批准号:60503032
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Research Grant
Combinational, Structural and algorithmic aspects of temporal graphs
时间图的组合、结构和算法方面
- 批准号:
2903280 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Studentship
CAREER: Geometric Aspects of Isoperimetric and Sobolev-type Inequalities
职业:等周和索博列夫型不等式的几何方面
- 批准号:
2340195 - 财政年份:2024
- 资助金额:
$ 1万 - 项目类别:
Continuing Grant
Aspects and Functions of Legal Principles in Civil Law Interpretation
民法解释中法律原则的方面和作用
- 批准号:
23K01192 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative aspects of three-dimensional quantum gravity
三维量子引力的非微扰方面
- 批准号:
2882187 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Studentship
Various Aspects of the Mechanistic Views of Nature in the Late 19th Century
19世纪末自然机械论的各个方面
- 批准号:
23K00265 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Human, Engineering, and Scientific Aspects of Disease Transmission in Natural and Built Environments
会议:自然和建筑环境中疾病传播的人类、工程和科学方面
- 批准号:
2332366 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
- 批准号:
2328867 - 财政年份:2023
- 资助金额:
$ 1万 - 项目类别:
Standard Grant














{{item.name}}会员




