Topology, Geometry and Physics

拓扑、几何和物理

基本信息

  • 批准号:
    2002771
  • 负责人:
  • 金额:
    $ 30.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project will study the behavior of solutions to certain systems of partial differential equations that are thought to give information about the underlying structures of four dimensional spaces. The equations of interest came from high energy physics where they were introduced as very symmetric models for elementary particle interactions. Basic question to address with regards to solutions are these: Are there finitely many or infinitely many solutions for the specific applications? In either case, what do the solutions look like? And what are their implications with regards to four dimensional spaces? By way of background: The equations are far too complicated for a computer to solve (let alone to solve by hand). Because of this, almost all information about the solutions must be obtained via a detailed analysis of the equations themselves. With regards to questions about four dimensional spaces, the central issue here is to understand the list of possible four dimensional spaces. This last question is also relevant to physics by virtue of the fact that the observable universe has four dimensions--three spatial dimensions and then the time direction. Since the equations of interest come from high energy physics theory and are close cousins to others used there and in condensed matter physics, the analysis tools developed in this project may also find applications to questions in these other fields. There is also an important educational support aspect of this project that is meant to bring graduate students up to speed on the relevant geometry, topology and analysis.The research in this prject has three primary focus points. The first concerns the behavior of the solutions to the Kapustin-Witten equations on the product of a three-dimensional manifold and the half-line with singular boundary conditions at one end given by a knot in the three-manifold. The goal for this focus point is to see whether non-convergent sequences of solutions have pathologies that prevent solution counting definitions of knot invariants for knots in the three dimensional manifold. Two sources of trouble likely arise, one is a novel pathology from the boundary conditions, and the other due to the presence of Z/2 harmonic 1-forms. The second focus point concerns the algebraic implications of the structure of the solution space for these same Kapustin-Witten equations and for the Kapustin-Witten equations on the product of the three-manifold with the line: Can an algebraic invariant be defined from these spaces given the non-compactness issues and with the novelty of formally zero dimensional solution spaces? The third focus point concerns the significance of the afore-mentioned Z/2 harmonic 1-forms and, more generally, Z/2 harmonic sections of a spin bundle. Such Z/2 harmonic sections appear as renormalized limits of sequences of solutions to the Vafa-Witten equations on four dimensional manifolds and the multi-spinor Seiberg-Witten equations on manifolds of dimensions three and four. Specific topics and questions not withstanding, the long term goal of this project is to understand the structure of smooth, four dimensional manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将研究某些偏微分方程系统的解的行为,这些方程被认为是四维空间的基本结构的信息。感兴趣的方程来自高能物理学,在那里它们被引入作为基本粒子相互作用的非常对称的模型。 关于解决方案要解决的基本问题是:对于特定的应用程序,是有无穷多个还是无穷多个解决方案? 在这两种情况下,解决方案是什么样的? 它们对四维空间有什么影响? 作为背景:这些方程太复杂了,计算机无法求解(更不用说手工求解了)。 因此,几乎所有关于解的信息都必须通过对方程本身的详细分析来获得。 关于四维空间的问题,这里的中心问题是理解可能的四维空间的列表。 最后一个问题也与物理学有关,因为可观测的宇宙有四维--三个空间维度,然后是时间方向。 由于感兴趣的方程来自高能物理理论,并且与那里和凝聚态物理中使用的其他方程非常相似,因此该项目中开发的分析工具也可以应用于这些其他领域的问题。 该项目还有一个重要的教育支持方面,旨在让研究生加快相关几何、拓扑和分析的速度。该项目的研究有三个主要重点。 第一个问题是三维流形和半直线的乘积上的Kapustin-Witten方程的解的行为,其中半直线的一端具有由三维流形中的纽结给出的奇异边界条件。 该焦点的目标是查看解的非收敛序列是否具有阻止三维流形中结的结不变量的解计数定义的病态。 可能出现两个麻烦的来源,一个是边界条件的新病理,另一个是由于Z/2调和1-形式的存在。 第二个焦点是关于这些相同的Kapustin-Witten方程的解空间的结构的代数含义,以及关于三流形与直线的乘积的Kapustin-Witten方程的解空间的结构的代数含义:给定非紧性问题和形式上零维解空间的新奇,可以从这些空间定义代数不变量吗? 第三个焦点涉及上述Z/2谐波1-形式的意义,更一般地说,自旋束的Z/2谐波部分。 这样的Z/2调和截面表现为四维流形上的Vafa-Witten方程和三维和四维流形上的多旋量Seiberg-Witten方程的解序列的重整化极限。 尽管有特定的主题和问题,该项目的长期目标是了解光滑的四维流形的结构。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clifford Taubes其他文献

Clifford Taubes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clifford Taubes', 18)}}的其他基金

Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    2027247
  • 财政年份:
    2020
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Topology, Geometry, and Physics
拓扑、几何和物理
  • 批准号:
    1708310
  • 财政年份:
    2017
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Physics
拓扑、几何和物理
  • 批准号:
    1401192
  • 财政年份:
    2014
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Total positivity: connections with algebra, topology, and statistical physics.
总体积极性:与代数、拓扑和统计物理学的联系。
  • 批准号:
    0854432
  • 财政年份:
    2009
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Topology, Geometry and Physics
拓扑、几何和物理
  • 批准号:
    0903186
  • 财政年份:
    2009
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Gromov-Witten Theory
格罗莫夫-维滕理论
  • 批准号:
    0401275
  • 财政年份:
    2004
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Physics
拓扑、几何和物理
  • 批准号:
    0405143
  • 财政年份:
    2004
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Physics
拓扑、几何和物理
  • 批准号:
    0104196
  • 财政年份:
    2001
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Vertical Integration of Research with Education and its Evaluation
研究与教育的垂直整合及其评估
  • 批准号:
    9810774
  • 财政年份:
    1999
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Physics
拓扑、几何和物理
  • 批准号:
    9803241
  • 财政年份:
    1998
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Physics of interaband effects: Viewpoint of quantum geometry and topology
带间效应物理学:量子几何和拓扑的观点
  • 批准号:
    23K03243
  • 财政年份:
    2023
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
  • 批准号:
    2247008
  • 财政年份:
    2023
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Topology, Geometry, and Physics
拓扑、几何和物理
  • 批准号:
    1708310
  • 财政年份:
    2017
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Topology, Geometry, and Physics
拓扑、几何和物理
  • 批准号:
    1611957
  • 财政年份:
    2016
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Thematic Semester on Probabilistic Methods in Geometry, Topology, and Mathematical Physics
几何、拓扑和数学物理中的概率方法专题学期
  • 批准号:
    1619617
  • 财政年份:
    2016
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Topology, Noncommutative Geometry, and Mathematical Physics
拓扑学、非交换几何和数学物理
  • 批准号:
    1607162
  • 财政年份:
    2016
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
CAREER: The geometry and physics of non-semi-simple quantum topology
职业:非半简单量子拓扑的几何和物理
  • 批准号:
    1452093
  • 财政年份:
    2015
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Physics
拓扑、几何和物理
  • 批准号:
    1401192
  • 财政年份:
    2014
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
Away from Independence: Probability in Geometry, Topology, Number Theory and Mathematical Physics
远离独立:几何、拓扑、数论和数学物理中的概率
  • 批准号:
    1308725
  • 财政年份:
    2013
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Standard Grant
Topology, Noncommutative Geometry, and Mathematical Physics
拓扑学、非交换几何和数学物理
  • 批准号:
    1206159
  • 财政年份:
    2012
  • 资助金额:
    $ 30.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了