Enzymatic Mechanism of Oxalate Decarboxylase Revealed by Biophysical and Structural Studies
生物物理和结构研究揭示草酸脱羧酶的酶机制
基本信息
- 批准号:2002950
- 负责人:
- 金额:$ 47.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With this award, the Chemistry of Life Processes Program in the Chemistry Division is funding Dr. Alexander Angerhofer from the University of Florida to investigate the degradation of oxalic acid by an enzyme known as oxalate decarboxylase which is found in soil bacteria and fungi. Overloading the body with oxalic acid can lead to kidney stones and other adverse health effects in animals and humans. As a plant product oxalic acid is present in many plant-derived foods in appreciable quantities. A way to keep the amount of oxalic acid low is to decompose it by chemical reactions catalyzed by enzymes. The research of Dr. Angerhofer is focused on the elucidation of the mechanism by which the enzyme oxalate decarboxylase breaks down oxalic acid. More specifically, Dr. Angerhofer will test the hypothesis that to decompose oxalic acid, this protein transfers electrons over a long distance, about 2 nm, between two manganese ions, one of which is located at the active site for the chemical transformation of oxalic acid. This study will involve use of a combination of advanced biochemical methods of protein engineering with structural and spectroscopic methods, including X-ray crystallography, electron paramagnetic resonance, and optical spectroscopy. The results of this research will enhance our fundamental knowledge of reactions that involve bio-active manganese and will ultimately aid in devising strategies to mitigate the presence of oxalic acid in plants. The project supports the training of a growing and diverse science and technology workforce in the state of Florida by involving students in research that helps them acquire scientific and professional skills useful in the bio-economy of the 21st century. The training of undergraduate students is supported through a course-based undergraduate research experience at the University of Florida and through the University Research Scholars Program, which brings gifted freshmen students to the cutting edge of modern research.This award supports the research of Dr. Angerhofer focused on the study of the molecular mechanisms by which the bacterial enzyme oxalate decarboxylase catalyzes the cleavage of the kinetically inert carbon-carbon bond in oxalic acid. It has been proposed that long-range electron transfer between the manganese ions situated at the N- and the C-terminal ends of the proteins subunits plays an important catalytic role. X-ray crystallography, molecular dynamics simulations, electrochemistry, and an array of advanced electron paramagnetic resonance (EPR) technologies, in combination with site-directed mutagenesis will be applied to the problem. The activity of manganese ions in the protein and a chain of electron transfer-active amino acids will be studied. Genetic code expansion methods will be used to introduce unnatural amino acids into the enzyme at specific target sites where they can be used to probe a long-range electron transfer pathway that may exist in the quaternary structure of the enzyme. The planned experiments will yield important structural and kinetic information about substrate and oxygen co-factor binding to the enzyme. The hypothesis that will be tested is that via long-range electron transfer dioxygen promotes catalysis by generating the +3 oxidation state on the active-site Mn ion situated at the N-terminal end, which in turn drives the reaction. The proposed work will elucidate how proteins tune and utilize the redox potential of mono-nuclear Mn centers for catalysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将资助佛罗里达大学的Alexander Angerhofer博士研究一种名为草酸脱羧酶的酶对草酸的降解作用,这种酶存在于土壤细菌和真菌中。体内草酸过量会导致肾结石和其他对动物和人类健康的不利影响。草酸作为一种植物产品,大量存在于许多植物性食品中。保持低草酸含量的一种方法是通过酶催化的化学反应来分解草酸。Angerhofer博士的研究重点是阐明草酸脱羧酶分解草酸的机制。更具体地说,安格霍费尔博士将测试一个假设,即为了分解草酸,这种蛋白质会在两个锰离子之间传递电子,距离很远,约为2 nm,其中一个位于草酸化学转化的活性部位。这项研究将结合使用先进的蛋白质工程生化方法与结构和光谱方法,包括X射线结晶学、电子顺磁共振和光学光谱学。这项研究的结果将增强我们对涉及生物活性锰的反应的基础知识,并最终将有助于制定策略,以减少植物中草酸的存在。该项目通过让学生参与研究,帮助他们获得对21世纪生物经济有用的科学和专业技能,从而支持佛罗里达州不断增长和多样化的科学和技术劳动力的培训。本科生的培训通过佛罗里达大学以课程为基础的本科生研究经验和大学研究学者计划得到支持,该计划将有天赋的新生带到现代研究的前沿。该奖项支持Angerhofer博士的研究,他专注于细菌酶草酸脱羧酶催化草酸中动态惰性碳-碳键断裂的分子机制。有人认为,位于蛋白质亚基N-端和C-端的锰离子之间的长程电子转移起着重要的催化作用。X射线结晶学、分子动力学模拟、电化学和一系列先进的电子顺磁共振(EPR)技术,以及定点突变将被应用于这个问题。将研究蛋白质和一系列具有电子转移活性的氨基酸中锰离子的活性。遗传密码扩展方法将被用来在特定的靶点将非天然氨基酸引入酶中,在那里它们可以用来探测可能存在于酶的四级结构中的远程电子转移途径。计划中的实验将产生关于底物和氧辅助因子与酶结合的重要结构和动力学信息。将被检验的假设是,通过远程电子转移,氧气通过在位于N-末端的活性中心锰离子上产生+3氧化态来促进催化,进而推动反应。这项拟议的工作将阐明蛋白质如何调节和利用单核锰中心的氧化还原潜力作为催化剂。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selective incorporation of 5‐hydroxytryptophan blocks long range electron transfer in oxalate decarboxylase
选择性掺入 5-羟色氨酸可阻断草酸脱羧酶中的长程电子转移
- DOI:10.1002/pro.4537
- 发表时间:2022
- 期刊:
- 影响因子:8
- 作者:Pastore, Anthony John;Montoya, Alvaro;Kamat, Manasi;Basso, Kari B.;Italia, James S.;Chatterjee, Abhishek;Drosou, Maria;Pantazis, Dimitrios A.;Angerhofer, Alexander
- 通讯作者:Angerhofer, Alexander
Epoxyqueuosine Reductase QueH in the Biosynthetic Pathway to tRNA Queuosine Is a Unique Metalloenzyme.
- DOI:10.1021/acs.biochem.1c00164
- 发表时间:2021-10-26
- 期刊:
- 影响因子:2.9
- 作者:Li Q;Zallot R;MacTavish BS;Montoya A;Payan DJ;Hu Y;Gerlt JA;Angerhofer A;de Crécy-Lagard V;Bruner SD
- 通讯作者:Bruner SD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Angerhofer其他文献
Immobilization of <em>Bacillus subtilis</em> oxalate decarboxylase on a Zn-IMAC resin
- DOI:
10.1016/j.bbrep.2015.08.017 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:
- 作者:
Umar Twahir;Laura Molina;Andrew Ozarowski;Alexander Angerhofer - 通讯作者:
Alexander Angerhofer
Inhibitory Mechanism of Nitric Oxide on Oxalate Decarboxylase
- DOI:
10.1016/j.freeradbiomed.2010.10.309 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Mario E.G. Moral;Witcha Imaram;Chingkuang K. Tu;David N. Silverman;Nigel G.J. Richards;Alexander Angerhofer - 通讯作者:
Alexander Angerhofer
EPR and HYSCORE investigation of the electronic structure of the model complex Mn(imidazole)<sub>6</sub>: Exploring Mn(II)–imidazole binding using single crystals
- DOI:
10.1016/j.jmr.2006.09.013 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:
- 作者:
Inés García-Rubio;Alexander Angerhofer;Arthur Schweiger - 通讯作者:
Arthur Schweiger
Alexander Angerhofer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Angerhofer', 18)}}的其他基金
The Catalytic Mechanism of Oxalate Decarboxylase Studied by Advanced EPR Techniques
先进EPR技术研究草酸脱羧酶催化机制
- 批准号:
1213440 - 财政年份:2012
- 资助金额:
$ 47.3万 - 项目类别:
Continuing Grant
The Catalytic Mechanism of Oxalate Decarboxylase Studied by Advanced EPR Experiments
先进EPR实验研究草酸脱羧酶的催化机制
- 批准号:
0809725 - 财政年份:2008
- 资助金额:
$ 47.3万 - 项目类别:
Continuing Grant
Time-Resolved ESR and ENDOR on Triplet States in Photosynthetic Antenna Complexes
光合天线复合体三重态的时间分辨 ESR 和 ENDOR
- 批准号:
9983034 - 财政年份:2000
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Upgrade and Development of Advanced (Electron Paramagnetic Resonance/Electron-Nuclear Double Resonance/Optically Detected Magnetic Resonance) EPR/ENDOR/ODMR Instrumentation
先进(电子顺磁共振/电子核双共振/光检测磁共振)EPR/ENDOR/ODMR仪器升级与发展
- 批准号:
9601864 - 财政年份:1996
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
相似国自然基金
激发态氢气分子(e,2e)反应三重微分截面的高阶波恩近似和two-step mechanism修正
- 批准号:11104247
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Why certain viruses don't get along in mosquitoes. The molecular mechanism.
为什么某些病毒不能在蚊子体内相处。
- 批准号:
FT230100465 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
ARC Future Fellowships
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
- 批准号:
2402252 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Fellowship Award
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




