A Crossover of Molecular and Extended Magnetism in Engineered Solids
工程固体中分子和扩展磁性的交叉
基本信息
- 批准号:2003783
- 负责人:
- 金额:$ 48.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Part I: Non-technical SummaryMagnetic materials have shaped our modern society because they are crucial for advances in the fields of renewable energy, electric engines, sensors, and data storage. There are two types of magnetic materials - molecular magnets, composed of isolated molecules, and extended solid or itinerant magnets with infinite frameworks of chemical bonds within the crystal structure. Molecular magnets are appealing due to their synthesis at low temperatures and high tunability but suffer from weak magnetic interactions. In turn, extended solid magnets exhibit strong magnetic interactions and large magnetic moments in the ordered state but have limited tunability. The current project is focused on bridging the gap between molecular and extended solid magnets by synthesizing a unique set of hybrid compounds, which combine advantages of both classes of magnetic materials. In the proposed hybrid compounds, tunable molecular fragments will be sandwiched in between one- and two-dimensional fragments of extended solid magnets. Understanding how structure determines properties is the key step for design of emerging materials. Thus, to achieve significant breakthroughs in the magnetic materials development, we are establishing fundamental relationships between structure and nature of interactions of molecular and extended fragments, and magnetic properties of the produced materials. In the educational component of the project, chemistry graduate and undergraduate students are engaged in chemistry demonstrations at local elementary schools, the Iowa State STEM Program for Women in Science and Engineering, and the Des Moines Science Center to foster interest of K-12 students and adults in chemistry. This project is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research.Part II: Technical SummaryExploration of chemical factors that affect magnetic interactions in solids is one of the major steps in the development of novel magnetic materials. Current solid state syntheses lack the predictability and rationality of organometallic and coordination chemistry. To achieve high predictability and rationally design magnetic materials, hybrid magnetic materials comprising infinite Fe-chalcogenide fragments separated by interstitial coordination metal complexes are being developed. In this way, strong magnetic interactions and tunability are segregated into two different sublattices of a hybrid material. The project uses coordination chemistry methodology to tune molecular transition metal amine complexes which are incorporated in between or connected to extended infinite Fe-chalcogenide fragments of itinerant magnets. It is anticipated that chirality and spin-crossover properties of coordination complexes will be translated to the itinerant Fe-chalcogenide fragments. An advantage of the target hybrids is that strong magnetic interactions and large magnetic moments present in the Fe-chalcogenide sublattice will either amplify the weak magnetic signatures of spin-crossover transitions or produce chiral magnets. In the educational component of the project, chemistry graduate and undergraduate students are engaged in chemistry demonstrations at local elementary schools, the Iowa State STEM Program for Women in Science and Engineering, and the Des Moines Science Center to foster interest of K-12 students and adults in chemistry. This project is supported by the Solid State and Materials Chemistry Program in the Division of Materials Research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
磁性材料塑造了我们的现代社会,因为它们对可再生能源、电动发动机、传感器和数据存储领域的进步至关重要。有两种类型的磁性材料——由孤立分子组成的分子磁铁和在晶体结构中具有无限化学键框架的扩展固体或流动磁铁。分子磁体具有低温合成和高可调性的特点,但其相互作用弱。扩展固体磁体在有序状态下表现出强的磁相互作用和大的磁矩,但可调性有限。目前的项目重点是通过合成一组独特的杂化化合物来弥合分子磁铁和扩展固体磁铁之间的差距,这些化合物结合了两类磁性材料的优点。在提出的杂化化合物中,可调谐的分子片段将夹在扩展固体磁铁的一维和二维片段之间。了解结构如何决定性能是新兴材料设计的关键步骤。因此,为了在磁性材料的发展中取得重大突破,我们正在建立分子和延伸片段相互作用的结构和性质与所生产材料的磁性之间的基本关系。在该项目的教育部分,化学研究生和本科生在当地小学、爱荷华州立大学科学与工程女性STEM项目和得梅因科学中心参与化学演示,以培养K-12学生和成年人对化学的兴趣。本项目由材料研究部固态与材料化学项目资助。探索影响固体中磁性相互作用的化学因素是开发新型磁性材料的主要步骤之一。目前的固态合成缺乏有机金属化学和配位化学的可预测性和合理性。为了实现磁性材料的高可预测性和合理设计,研究了由间隙配位金属配合物分离的无限铁硫系碎片组成的杂化磁性材料。通过这种方法,强磁相互作用和可调性被分离到杂化材料的两个不同的亚晶格中。该项目使用配位化学方法来调整分子过渡金属胺配合物,这些配合物被纳入或连接到流动磁铁的无限铁硫族化物碎片之间。预计配位配合物的手性和自旋交叉性质将转化为流动的铁硫族碎片。目标杂化体的一个优点是,硫族铁亚晶格中存在的强磁相互作用和大磁矩将放大自旋交叉跃迁的弱磁特征或产生手性磁体。在该项目的教育部分,化学研究生和本科生在当地小学、爱荷华州立大学科学与工程女性STEM项目和得梅因科学中心参与化学演示,以培养K-12学生和成年人对化学的兴趣。本项目由材料研究部固态与材料化学项目资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modulation of transport properties via S/Br substitution: solvothermal synthesis, crystal structure, and transport properties of Bi 13 S 17 Br 3
通过 S/Br 取代调节传输特性:Bi 13 S 17 Br 3 的溶剂热合成、晶体结构和传输特性
- DOI:10.1039/d2dt02295h
- 发表时间:2022
- 期刊:
- 影响因子:4
- 作者:Amarasinghe, Dinesh K.;Yox, Philip;Viswanathan, Gayatri;Adeyemi, Adedoyin N.;Kovnir, Kirill
- 通讯作者:Kovnir, Kirill
Non-innocent Intercalation of Diamines into Tetragonal FeS Superconductor
二胺非无害嵌入四方 FeS 超导体
- DOI:10.1021/acsaem.0c02996
- 发表时间:2021
- 期刊:
- 影响因子:6.4
- 作者:Harmer, Colin P.;Pak, Chongin;Greenfield, Joshua T.;Adeyemi, Adedoyin N.;Gamage, Eranga H.;Kovnir, Kirill
- 通讯作者:Kovnir, Kirill
Pseudo-Polymorphism in Layered FeS Intercalates: A Competition between Charged and Neutral Guest Species
- DOI:10.1021/acs.chemmater.2c00270
- 发表时间:2022-06
- 期刊:
- 影响因子:8.6
- 作者:Colin P. Harmer;S. Kamali;O. Lebedev;Shannon J. Lee;R. Ribeiro;P. Canfield;K. Kovnir
- 通讯作者:Colin P. Harmer;S. Kamali;O. Lebedev;Shannon J. Lee;R. Ribeiro;P. Canfield;K. Kovnir
Tuning of Cr–Cr Magnetic Exchange through Chalcogenide Linkers in Cr 2 Molecular Dimers
通过 Cr2 分子二聚体中的硫属化物连接基调节 Cr–Cr 磁交换
- DOI:10.1021/acs.inorgchem.2c00298
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Gamage, Eranga H.;Ribeiro, Raquel A.;Harmer, Colin P.;Canfield, Paul C.;Ozarowski, Andrew;Kovnir, Kirill
- 通讯作者:Kovnir, Kirill
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirill Kovnir其他文献
Tris(ethylenediamine)cobalt(II) dichloride
三(乙二胺)二氯化钴(II)
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kristin Cooke;Andrei V. Olenev;Kirill Kovnir - 通讯作者:
Kirill Kovnir
Pd and octahedra do not get along: Square planar [PdSsub4/sub] units in non-centrosymmetric Lasub6/subPdSisub2/subSsub14/sub
- DOI:
10.1016/j.jallcom.2022.163756 - 发表时间:
2022-05-05 - 期刊:
- 影响因子:6.300
- 作者:
Georgiy Akopov;Gayatri Viswanathan;Nethmi W. Hewage;Philip Yox;Kui Wu;Kirill Kovnir - 通讯作者:
Kirill Kovnir
Organizing Chaos: Boosting Thermoelectric Properties by Ordering the Clathrate Framework of Ba8Cu16As30
组织混沌:通过有序 Ba8Cu16As30 的笼形框架来提高热电性能
- DOI:
10.1021/acs.chemmater.4c00419 - 发表时间:
2024 - 期刊:
- 影响因子:8.6
- 作者:
Philip Yox;Frank Cerasoli;Arka Sarkar;Genevieve Amobi;Gayatri Viswanathan;Jackson Voyles;Oleg l. Lebedev;Davide Donadio;Kirill Kovnir - 通讯作者:
Kirill Kovnir
Semiconducting silicon–phosphorus frameworks for caging exotic polycations
- DOI:
10.1039/d2cc02304k - 发表时间:
2022-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Philip Yox;Andrew P. Porter;Rick W. Dorn;Victoria Kyveryga;Aaron J. Rossini;Kirill Kovnir - 通讯作者:
Kirill Kovnir
Machine Learning-Guided Discovery of Ternary Compounds Containing La, P, and Group 14 Elements
机器学习引导发现含有 La、P 和第 14 族元素的三元化合物
- DOI:
10.1021/acs.inorgchem.2c02431 - 发表时间:
2022 - 期刊:
- 影响因子:4.6
- 作者:
Huaijun Sun;Chao Zhang;Weiyi Xia;Ling Tang;Renhai Wang;Georgiy Akopov;Nethmi W. Hewage;Kai-Ming Ho;Kirill Kovnir;Cai-Zhuang Wang - 通讯作者:
Cai-Zhuang Wang
Kirill Kovnir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirill Kovnir', 18)}}的其他基金
CAS: Solution Routes Towards Metastable Functional Chalcogenides
CAS:亚稳态功能硫属化物的解决方案
- 批准号:
2333388 - 财政年份:2024
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
EAGER: SUPER: Non-Hexagonal 2D Boride and Borocarbide Superconductors
EAGER:SUPER:非六方二维硼化物和硼碳化物超导体
- 批准号:
2132666 - 财政年份:2021
- 资助金额:
$ 48.92万 - 项目类别:
Continuing Grant
CAS: Rational Design of Earth-Abundant Phosphide Hydrogen Evolution Catalysts
CAS:地球储量丰富的磷化物析氢催化剂的合理设计
- 批准号:
1955456 - 财政年份:2020
- 资助金额:
$ 48.92万 - 项目类别:
Continuing Grant
相似国自然基金
Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
- 批准号:81300605
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Molecular Plant
- 批准号:31224801
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
Molecular Plant
- 批准号:31024802
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Cellular & Molecular Immunology
- 批准号:30824806
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Development of spatiotemporally-extended single-molecule live-cell imaging technique to understand cellular functions as molecular systems
开发时空扩展的单分子活细胞成像技术,以将细胞功能理解为分子系统
- 批准号:
23H02102 - 财政年份:2023
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation on Chiral Molecular Wire Properties Based on pi-Extended Helical Molecules
基于π延伸螺旋分子的手性分子线性质研究
- 批准号:
23H01949 - 财政年份:2023
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Extended short wave infrared three-dimensional fluorescence and X-ray CT molecular tomography (SWIR FMT)
扩展短波红外三维荧光和 X 射线 CT 分子断层扫描 (SWIR FMT)
- 批准号:
416375901 - 财政年份:2019
- 资助金额:
$ 48.92万 - 项目类别:
Research Grants
Synthesis of pi-Extended Helical Aromatic Compounds and Investigation on Their Chiral Molecular Functions
π-延伸螺旋芳香族化合物的合成及其手性分子功能研究
- 批准号:
18K05077 - 财政年份:2018
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extended dynamic facilitation theory and non-equilibrium phase transition in athermal dense molecular systems
扩展动态促进理论和非热致密分子系统中的非平衡相变
- 批准号:
17K05574 - 财政年份:2017
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the molecular mechanisms of aging using mice with extended longevity
使用长寿小鼠阐明衰老的分子机制
- 批准号:
17H01537 - 财政年份:2017
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of single-component molecular conductors by using extended TTF-type dithiolate ligands with freedom of movement
使用可自由移动的扩展 TTF 型二硫醇配体开发单组分分子导体
- 批准号:
17K05846 - 财政年份:2017
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on extended fluid dynamics equations based on molecular dynamics of vapor-liquid interface
基于汽液界面分子动力学的扩展流体动力学方程研究
- 批准号:
16K14160 - 财政年份:2016
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Extended Low-Molecular Weight Heparin VTE Prophylaxis in the Thoracic Surgical population, a randomized controlled pilot study
胸外科人群中低分子量肝素延长 VTE 预防,一项随机对照试点研究
- 批准号:
323687 - 财政年份:2015
- 资助金额:
$ 48.92万 - 项目类别:
Operating Grants
Accurate Many-Body Electronic-Structure Methods for Extended Molecular Assemblies
用于扩展分子组装的精确多体电子结构方法
- 批准号:
1362655 - 财政年份:2014
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant