Expanding Mechanically Mediated Polymerization via Mechanistic Understanding

通过机理理解扩展机械介导的聚合

基本信息

  • 批准号:
    2003796
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

With funding from the Macromolecular, Supramolecular and Nanochemistry Program of the Chemistry Division, Professor Aaron P. Esser-Kahn of University of Chicago is investigating the mechanism and reactivity of polymerization reactions mediated by piezoelectric catalysis. Piezoelectric compounds are solid materials, such as crystals, certain ceramics or even biological matter like bone, which have the ability to generate electrical charge from applied mechanical stress. In this work, piezoelectric particles composed of zinc and oxygen are agitated with sound waves (mechanical stress) to build electric charge. The charged particles are then used to speed up the formation of polymers in which the chain-ends contain carbon-sulfur bonds. These bonds are very unique because they enable reversible cross-linking of polymer chains resulting in the formation of materials with self-modelling properties. In addition to a mechanistic understanding of how piezoelectric particles speed up the polymerization process, several studies are performed to determine their surface composition and crystalline structure using a variety of sophisticated X-ray experimental techniques. This research actively engages students across a broad age range with a focus on high-school age children. The team is further developing burgeoning high-school summer “Pathways” program that aims to increase the number of STEM degree seeking college freshman. This research is focused on mechanistic and reactivity studies of polymerization mediated by piezoelectric catalysis. Piezo-mediated thiol-ene polymerization is extended to include new radical and metathesis monomers, disulfide bond formation, and novel reactivity. Radical based reactivity is expanded to include metathesis and ring-opening processes. In parallel, the mechanism by which piezo-particles mediate polymerization activity is explored. Combining these two approaches, the results of this research have the potential to greatly expand both the knowledge of mechanically controlled polymerization and the monomers and polymers accessible via this technique. Beyond simply improving polymer properties, mechanically driven electron ejection events could be used to harden solid materials through reduction/oxidation processes mediated by embedded piezo particles while serving as self-reporting strain and stress sensors. The potential to form new polymers in demanding environments could also be possible using mechanically initiated polymerization events.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
芝加哥大学的Aaron P. Esser-Kahn教授在化学系大分子、超分子和纳米化学项目的资助下,正在研究压电催化介导的聚合反应的机理和反应性。 压电化合物是固体材料,例如晶体、某些陶瓷或甚至生物物质如骨,其具有从施加的机械应力产生电荷的能力。 在这项工作中,由锌和氧组成的压电颗粒被声波(机械应力)搅动以建立电荷。 然后,带电粒子用于加速聚合物的形成,其中链端含有碳-硫键。 这些键是非常独特的,因为它们能够使聚合物链可逆交联,从而形成具有自建模特性的材料。 除了对压电颗粒如何加速聚合过程的机械理解外,还进行了几项研究,以使用各种复杂的X射线实验技术确定其表面组成和晶体结构。 这项研究积极吸引了广泛年龄段的学生,重点是高中年龄段的儿童。 该团队正在进一步开发新兴的高中暑期“途径”计划,旨在增加寻求STEM学位的大学新生的数量。 本论文主要研究压电催化聚合反应的机理和反应活性。 压电介导的硫醇-烯聚合扩展到包括新的自由基和易位单体,二硫键的形成,和新的反应性。 基于自由基的反应性被扩展到包括复分解和开环过程。 同时,探讨了压电颗粒介导聚合活性的机制。 结合这两种方法,本研究的结果有可能大大扩展机械控制聚合的知识和通过这种技术可访问的单体和聚合物。 除了简单地改善聚合物性能之外,机械驱动的电子喷射事件可以用于通过嵌入式压电颗粒介导的还原/氧化过程硬化固体材料,同时用作自报告应变和应力传感器。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Esser-Kahn其他文献

Mechanically triggered adaptive materials
  • DOI:
    10.1557/s43577-024-00801-x
  • 发表时间:
    2024-10-24
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Yixiao Dong;Pin-Ruei Huang;Elina Ghimire;Charlie A. Lindberg;Farsa Ram;Stuart J. Rowan;Aaron Esser-Kahn
  • 通讯作者:
    Aaron Esser-Kahn
An anti-Brownian magnetic feedback trap for bio-orthogonal manipulation of nanoparticles
  • DOI:
    10.1016/j.bpj.2023.11.1031
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Trevor Anderberg;Andres Cook;Kepler Domurat-Sousa;Ayesha Ejaz;Kyle Lin;Justin E. Jureller;Aaron Esser-Kahn;Allison Squires
  • 通讯作者:
    Allison Squires

Aaron Esser-Kahn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Esser-Kahn', 18)}}的其他基金

Mechanically Controlled Polymerization via Piezo-reduction of Copper
通过铜压电还原进行机械控制聚合
  • 批准号:
    1710116
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

I-Corps: Translation Potential of Mechanically Compliant Fracture Fixation Plates for Long Bone Fractures
I-Corps:用于长骨骨折的机械顺应性骨折固定板的平移潜力
  • 批准号:
    2410029
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
  • 批准号:
    24K15741
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
  • 批准号:
    2338371
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Flame-Retarding and Mechanically Resilient Elastomer Composites
阻燃和机械弹性弹性体复合材料
  • 批准号:
    LP230100229
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Linkage Projects
STTR Phase I: Mechanically Controlled Drug Delivery Platform for Joint Environments
STTR 第一阶段:用于关节环境的机械控制药物输送平台
  • 批准号:
    2304235
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Awareness with Paralysis and Post-Traumatic Stress Disorder among Mechanically Ventilated Emergency Department Survivors: The ED-AWARENESS-2 Study
机械通气急诊科幸存者对瘫痪和创伤后应激障碍的认识:ED-AWARENESS-2 研究
  • 批准号:
    10583909
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
In-situ S/TEM investigation on nature and consequence of mechanically induced martensite in metallic materials
金属材料中机械诱导马氏体的性质和后果的原位 S/TEM 研究
  • 批准号:
    23K13222
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Noninvasive Diagnostic Markers of Lower Respiratory Tract Infection in Mechanically Ventilated Patients
机械通气患者下呼吸道感染的无创诊断标志物
  • 批准号:
    10697471
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Tissue-level Determinants of Mechanically-induced Arrythmias
机械诱发心律失常的组织水平决定因素
  • 批准号:
    495557
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Miscellaneous Programs
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
  • 批准号:
    EP/X012263/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了