Collaborative Research : Elements : Extending the physics reach of LHCb by developing and deploying algorithms for a fully GPU-based first trigger stage

合作研究:要素:通过开发和部署完全基于 GPU 的第一触发阶段的算法来扩展 LHCb 的物理范围

基本信息

  • 批准号:
    2004364
  • 负责人:
  • 金额:
    $ 28.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The development of the Standard Model (SM) of particle physics is a major intellectual achievement. The validity of this model was further confirmed by the discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN. However, the Standard Model leaves open many questions, including why matter dominates over anti-matter in the Universe and the properties of dark matter. Most explanations require new phenomena, which we call Beyond the Standard Model Physics (BSM), and which the LHCb experiment at CERN has been designed to explore. The LHC is the premier High Energy Physics particle accelerator in the world and is currently operating at the CERN laboratory near Geneva Switzerland, one of the foremost facilities for addressing these BSM questions. The LHCb experiment is one of four large experiments at the LHC and is designed to study in detail the decays of hadrons containing b or c quarks. The goal is to identify the existence of new physics beyond the Standard Model by examining the properties of hadrons containing these quarks. The new physics, or new forces, can be manifest by particles, as yet to be discovered, whose presence would modify decay rates and CP violating asymmetries of hadrons containing the b and c quarks, allowing new phenomena to be observed indirectly - or via direct observation of new force-carrying particles. The data sets collected by the LHC experiments are some of the largest in the world. For example, the sensor arrays of the LHCb experiment, in which both PIs participate, produce about 100 TB/s and close to a zettabyte per year. Even after drastic data-reduction performed by custom-built read-out electronics, the data volume is still about 10 exabytes per year. Such large data sets cannot be stored indefinitely; therefore, all high energy physics (HEP) experiments employ a second data-reduction scheme executed in real time by a data-ingestion system - referred to as a trigger system in HEP - to decide whether each event is to be persisted for future analysis or permanently discarded. The primary goal of this project is developing and deploying software that will maximize the performance of the LHCb trigger system - running its first processing stage on GPUs - so that the full physics discovery potential of LHCb is realized.The LHCb detector is being upgraded for Run 3 (which will start to record data in 2022), when the trigger system will need to process 25 exabytes per year. Currently, only 0.3 of the 10 exabytes per year processed by the trigger is analyzed using high-level computing algorithms; the rest is discarded prior to this stage using simple algorithms executed on FPGAs. To significantly extend its physics reach in Run 3, LHCb plans to process the entire 25 exabytes each year using high-level computing algorithms. The PIs propose running the entire first trigger-processing stage on GPUs, which has zero (likely negative) net cost, and frees up all of the CPU resources for the second processing stage. The LHCb trigger makes heavy use of machine learning (ML) algorithms, which will need to be reoptimized both for Run 3 conditions but also for usage on GPUs. The specific objectives of this proposal are developing: GPU-based versions of the primary trigger-selection algorithms, which make heavy usage of ML; GPU-based calorimeter-clustering and electron-identification algorithms, likely using ML; and the infrastructure required to deploy ML algorithms within the GPU-based trigger framework. These advances will make it possible to explore many potential explanations for dark matter, e.g., dark photon decays, and the matter/anti-matter asymmetry of our universe using data that would be otherwise inaccessible due to trigger-system limitations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
粒子物理学标准模型(SM)的发展是一项重大的智力成就。这一模型的有效性在欧洲核子研究中心的大型强子对撞机(LHC)上发现希格斯玻色子后得到进一步证实。然而,标准模型留下了许多悬而未决的问题,包括为什么宇宙中物质占主导地位,以及暗物质的性质。大多数解释都需要新的现象,我们称之为超越标准模型物理学(BSM),欧洲核子研究中心的LHCb实验就是为了探索这一点。LHC是世界上首屈一指的高能物理粒子加速器,目前正在瑞士日内瓦附近的CERN实验室运行,该实验室是解决这些BSM问题的最重要设施之一。LHC B实验是LHC的四个大型实验之一,旨在详细研究含有B或c夸克的强子衰变。目标是通过检查包含这些夸克的强子的性质来确定标准模型之外的新物理的存在。新的物理学或新的力可以通过尚未发现的粒子表现出来,它们的存在将改变衰变率和CP,破坏包含B和c夸克的强子的不对称性,从而允许间接观察新的现象--或者通过直接观察新的携带力的粒子。LHC实验收集的数据集是世界上最大的数据集之一。例如,LHCb实验的传感器阵列,其中两个PI都参与,产生约100 TB/s,每年接近1 ZB。即使在定制的读出电子设备进行大幅数据减少后,数据量仍然约为每年10艾字节。如此大的数据集不能被无限期地存储;因此,所有的高能物理(HEP)实验都采用由数据摄取系统(在HEP中被称为触发系统)在真实的时间中执行的第二数据缩减方案,以决定每个事件是被持久化用于未来分析还是被永久丢弃。该项目的主要目标是开发和部署软件,以最大限度地提高LHCb触发系统的性能(在GPU上运行其第一个处理阶段),从而实现LHCb的全部物理发现潜力。LHCb探测器正在升级运行3(将于2022年开始记录数据),届时触发系统每年需要处理25 EB。目前,触发器每年处理的10艾字节中只有0.3艾字节使用高级计算算法进行分析;其余的在此阶段之前使用FPGA上执行的简单算法丢弃。为了在Run 3中显著扩展其物理范围,LHCb计划使用高级计算算法每年处理全部25 EB。PI建议在GPU上运行整个第一处理器处理阶段,这具有零(可能为负)净成本,并释放所有CPU资源用于第二处理阶段。LHCb触发器大量使用机器学习(ML)算法,这些算法需要针对Run 3条件以及GPU上的使用进行重新优化。该提案的具体目标是开发:基于GPU的主要路由选择算法版本,该算法大量使用ML;基于GPU的热量计聚类和电子识别算法,可能使用ML;以及在基于GPU的触发框架内部署ML算法所需的基础设施。这些进展将使探索暗物质的许多潜在解释成为可能,例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Sokoloff其他文献

Michael Sokoloff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Sokoloff', 18)}}的其他基金

Experimental Flavor Physics
实验风味物理学
  • 批准号:
    2208983
  • 财政年份:
    2022
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Experimental Flavor Physics
实验风味物理学
  • 批准号:
    1806260
  • 财政年份:
    2018
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: SI2:SSE: Extending the Physics Reach of LHCb in Run 3 Using Machine Learning in the Real-Time Data Ingestion and Reduction System
合作研究:SI2:SSE:在运行 3 中使用实时数据摄取和还原系统中的机器学习扩展 LHCb 的物理范围
  • 批准号:
    1740102
  • 财政年份:
    2017
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: S2I2: Cncp: Conceptualization of an S2I2 Institute for High Energy Physics
合作研究:S2I2:Cncp:S2I2 高能物理研究所的概念化
  • 批准号:
    1558219
  • 财政年份:
    2016
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: Data-Intensive Analysis for High Energy Physics (DIANA/HEP)
合作研究:SI2-SSI:高能物理数据密集型分析 (DIANA/HEP)
  • 批准号:
    1450319
  • 财政年份:
    2015
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Continuing Grant
Experimental Flavor Physics
实验风味物理学
  • 批准号:
    1505719
  • 财政年份:
    2015
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Continuing Grant
Enabling High Energy Physics at the Information Frontier Using GPUs and Other Many/Multi-Core Architectures
使用 GPU 和其他多核架构在信息前沿实现高能物理
  • 批准号:
    1414736
  • 财政年份:
    2014
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: Construction of the Upstream Tracker for the LHCb Upgrade
合作研究:LHCb升级上游跟踪器的构建
  • 批准号:
    1433120
  • 财政年份:
    2014
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Continuing Grant
Physics at Flavor Factories
香料工厂的物理
  • 批准号:
    1205805
  • 财政年份:
    2012
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Continuing Grant
Physics at Flavor Factories
香料工厂的物理
  • 批准号:
    1068530
  • 财政年份:
    2011
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elements: VLCC-States: Versioned Lineage-Driven Checkpointing of Composable States
协作研究:元素:VLCC-States:可组合状态的版本化谱系驱动检查点
  • 批准号:
    2411387
  • 财政年份:
    2024
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Lattice QCD software for nuclear physics on heterogeneous architectures
合作研究:Elements:用于异构架构核物理的 Lattice QCD 软件
  • 批准号:
    2311430
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329189
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246686
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Phonon Database Generation, Analysis, and Visualization for Data Driven Materials Discovery
协作研究:要素:数据驱动材料发现的声子数据库生成、分析和可视化
  • 批准号:
    2311202
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Enabling Particle and Nuclear Physics Discoveries with Neural Deconvolution
合作研究:元素:通过神经反卷积实现粒子和核物理发现
  • 批准号:
    2311667
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 28.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了