Collaborative Research: Frameworks: funcX: A Function Execution Service for Portability and Performance

协作研究:框架:funcX:可移植性和性能的函数执行服务

基本信息

  • 批准号:
    2004894
  • 负责人:
  • 金额:
    $ 265.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The funcX project is developing, deploying, and operating a new distributed computing cyberinfrastructure platform to enable researchers to build applications from programming functions that execute on different computing resources, from laptops to supercomputers. This cloud-hosted service democratizes access to advanced computing by providing intuitive interfaces for both registering remote computers as function executors and executing functions on these computers reliably, securely, and with high performance. Researchers can thus decompose monolithic applications into collections of reusable lightweight functions that can be run wherever makes the most sense, for example where data reside or where excess capacity is available. By simplifying access to specialized and high performance cyberinfrastructure and decreasing the time to discovery, the project serves the national interest, as stated in NSF's mission, by promoting the progress of science. A total of 33 diverse science, cyberinfrastructure, and software institute partners working with cutting-edge science applications and research cyberinfrastructure will directly benefit from the funcX platform.This project develops funcX, a scalable and high-performance federated platform for managing the remote execution of (often short-duration) functions across diverse cyberinfrastructure systems, from edge accelerators to clusters, supercomputers, and clouds. funcX allows developers to decompose applications into collections of functions that can each be executed in the best location, in terms of cost, execution time, data movement costs, and/or energy consumption. It thus integrates the extreme convenience of the function as a service (FaaS) model, developed in industry for specific industry applications, with support for the specialized needs of scientific research. funcX addresses important barriers to these new uses of research cyberinfrastructure systems, by enabling the intuitive, flexible, and scalable execution of functions without regard to physical location, scheduler architecture, virtualization technology, administrative domain, or data location. Flexible open-source funcX agent software makes it easy to expose arbitrary computing systems as funcX computing platforms, thereby transforming existing cyberinfrastructure systems into high-performance function serving environments (endpoints). The cloud-hosted funcX service provides a REST interface for registering functions, discovering available endpoints, and managing the execution of functions on endpoints, all via a universal trust fabric and standard web authentication and authorization mechanisms. It dynamically creates and deploys containers that incorporate function dependencies and provide a secure and isolated environment for safe function execution. The project engages a diverse set of 11 science partners, 18 research computing and cyberinfrastructure projects, and 4 NSF Software Institutes, each supporting many NSF-funded researchers, to provide use cases for funcX, shape its design, and evaluate its implementation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The funcX project is developing, deploying, and operating a new distributed computing cyberinfrastructure platform to enable researchers to build applications from programming functions that execute on different computing resources, from laptops to supercomputers. This cloud-hosted service democratizes access to advanced computing by providing intuitive interfaces for both registering remote computers as function executors and executing functions on these computers reliably, securely, and with high performance. Researchers can thus decompose monolithic applications into collections of reusable lightweight functions that can be run wherever makes the most sense, for example where data reside or where excess capacity is available. By simplifying access to specialized and high performance cyberinfrastructure and decreasing the time to discovery, the project serves the national interest, as stated in NSF's mission, by promoting the progress of science. A total of 33 diverse science, cyberinfrastructure, and software institute partners working with cutting-edge science applications and research cyberinfrastructure will directly benefit from the funcX platform.This project develops funcX, a scalable and high-performance federated platform for managing the remote execution of (often short-duration) functions across diverse cyberinfrastructure systems, from edge accelerators to clusters, supercomputers, and clouds. funcX allows developers to decompose applications into collections of functions that can each be executed in the best location, in terms of cost, execution time, data movement costs, and/or energy consumption. It thus integrates the extreme convenience of the function as a service (FaaS) model, developed in industry for specific industry applications, with support for the specialized needs of scientific research. funcX addresses important barriers to these new uses of research cyberinfrastructure systems, by enabling the intuitive, flexible, and scalable execution of functions without regard to physical location, scheduler architecture, virtualization technology, administrative domain, or data location. Flexible open-source funcX agent software makes it easy to expose arbitrary computing systems as funcX computing platforms, thereby transforming existing cyberinfrastructure systems into high-performance function serving environments (endpoints). The cloud-hosted funcX service provides a REST interface for registering functions, discovering available endpoints, and managing the execution of functions on endpoints, all via a universal trust fabric and standard web authentication and authorization mechanisms. It dynamically creates and deploys containers that incorporate function dependencies and provide a secure and isolated environment for safe function execution. The project engages a diverse set of 11 science partners, 18 research computing and cyberinfrastructure projects, and 4 NSF Software Institutes, each supporting many NSF-funded researchers, to provide use cases for funcX, shape its design, and evaluate its implementation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DLHub: Simplifying publication, discovery, and use of machine learning models in science
Enhancing Automated FaaS with Cost-aware Provisioning of Cloud Resources
通过具有成本意识的云资源配置来增强自动化 FaaS
? unc X: Federated Function as a Service for Science
  • DOI:
    10.1109/tpds.2022.3208767
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Li, Zhuozhao;Chard, Ryan;Babuji, Yadu;Galewsky, Ben;Skluzacek, Tyler J.;Nagaitsev, Kirill;Woodard, Anna;Blaiszik, Ben;Bryan, Josh;Katz, Daniel S.
  • 通讯作者:
    Katz, Daniel S.
A Serverless Framework for Distributed Bulk Metadata Extraction
用于分布式批量元数据提取的无服务器框架
An Empirical Study of Package Dependencies and Lifetimes in Binder Python Containers
Binder Python 容器中包依赖关系和生命周期的实证研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ian Foster其他文献

GreenFaaS: Maximizing Energy Efficiency of HPC Workloads with FaaS
GreenFaaS:利用 FaaS 最大限度提高 HPC 工作负载的能源效率
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alok V. Kamatar;Valerie Hayot;Y. Babuji;André Bauer;Gourav Rattihalli;Ninad Hogade;D. Milojicic;Kyle Chard;Ian Foster
  • 通讯作者:
    Ian Foster
An optical microscopy system for 3 D dynamic imagingRandy
用于 3D 动态成像的光学显微镜系统Randy
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Hudson;John N. Aarsvold;Chin;Jie Chen;Peter Davies;T. Disz;Ian Foster;Melvin Griem;Man K Kwong;B. Lin
  • 通讯作者:
    B. Lin
DeepSpeed4Science Initiative: Enabling Large-Scale Scientific Discovery through Sophisticated AI System Technologies
DeepSpeed4Science 计划:通过复杂的人工智能系统技术实现大规模科学发现
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Song;Bonnie Kruft;Minjia Zhang;Conglong Li;Shiyang Chen;Chengming Zhang;Masahiro Tanaka;Xiaoxia Wu;Jeff Rasley;A. A. Awan;Connor Holmes;Martin Cai;Adam Ghanem;Zhongzhu Zhou;Yuxiong He;Christopher Bishop;Max Welling;Tie;Christian Bodnar;Johannes Brandsetter;W. Bruinsma;Chan Cao;Yuan Chen;Peggy Dai;P. Garvan;Liang He;E. Heider;Pipi Hu;Peiran Jin;Fusong Ju;Yatao Li;Chang Liu;Renqian Luo;Qilong Meng;Frank Noé;Tao Qin;Janwei Zhu;Bin Shao;Yu Shi;Wen;Gregor Simm;Megan Stanley;Lixin Sun;Yue Wang;Tong Wang;Zun Wang;Lijun Wu;Yingce Xia;Leo Xia;Shufang Xie;Shuxin Zheng;Jianwei Zhu;Pete Luferenko;Divya Kumar;Jonathan Weyn;Ruixiong Zhang;Sylwester Klocek;V. Vragov;Mohammed Alquraishi;Gustaf Ahdritz;C. Floristean;Cristina Negri;R. Kotamarthi;V. Vishwanath;Arvind Ramanathan;Sam Foreman;Kyle Hippe;T. Arcomano;R. Maulik;Max Zvyagin;Alexander Brace;Bin Zhang;Cindy Orozco Bohorquez;Austin R. Clyde;B. Kale;Danilo Perez;Heng Ma;Carla M. Mann;Michael Irvin;J. G. Pauloski;Logan Ward;Valerie Hayot;M. Emani;Zhen Xie;Diangen Lin;Maulik Shukla;Thomas Gibbs;Ian Foster;James J. Davis;M. Papka;Thomas Brettin;Prasanna Balaprakash;Gina Tourassi;John P. Gounley;Heidi Hanson;T. Potok;Massimiliano Lupo Pasini;Kate Evans;Dan Lu;D. Lunga;Junqi Yin;Sajal Dash;Feiyi Wang;M. Shankar;Isaac Lyngaas;Xiao Wang;Guojing Cong;Peifeng Zhang;Ming Fan;Siyan Liu;A. Hoisie;Shinjae Yoo;Yihui Ren;William Tang;K. Felker;Alexey Svyatkovskiy;Hang Liu;Ashwin Aji;Angela Dalton;Michael Schulte;Karl Schulz;Yuntian Deng;Weili Nie;Josh Romero;Christian Dallago;Arash Vahdat;Chaowei Xiao;Anima Anandkumar;R. Stevens
  • 通讯作者:
    R. Stevens
Review of low-cost self-driving laboratories in chemistry and materials science: the “frugal twin” concept
化学与材料科学低成本自动驾驶实验室综述:“节俭双胞胎”概念
  • DOI:
    10.1039/d3dd00223c
  • 发表时间:
    2024-05-15
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Stanley Lo;Sterling G. Baird;Joshua Schrier;Ben Blaiszik;Nessa Carson;Ian Foster;Andrés Aguilar-Granda;Sergei V. Kalinin;Benji Maruyama;Maria Politi;Helen Tran;Taylor D. Sparks;Alán Aspuru-Guzik
  • 通讯作者:
    Alán Aspuru-Guzik
Exploring Benchmarks for Self-Driving Labs using Color Matching
使用颜色匹配探索自动驾驶实验室的基准
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tobias Ginsburg;Kyle Hippe;Ryan Lewis;Aileen Cleary;D. Ozgulbas;Rory Butler;Casey Stone;Abraham Stroka;Rafael Vescovi;Ian Foster
  • 通讯作者:
    Ian Foster

Ian Foster的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ian Foster', 18)}}的其他基金

Collaborative Research: NSF Workshop on Automated, Programmable and Self Driving Labs
合作研究:NSF 自动化、可编程和自动驾驶实验室研讨会
  • 批准号:
    2335910
  • 财政年份:
    2023
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Frameworks: Garden: A FAIR Framework for Publishing and Applying AI Models for Translational Research in Science, Engineering, Education, and Industry
框架:Garden:用于发布和应用人工智能模型进行科学、工程、教育和工业转化研究的公平框架
  • 批准号:
    2209892
  • 财政年份:
    2022
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: ScaDL: New Approaches to Scaling Deep Learning for Science Applications on Supercomputers
协作研究:OAC 核心:ScaDL:在超级计算机上扩展深度学习科学应用的新方法
  • 批准号:
    2107511
  • 财政年份:
    2021
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track D: The Data Hypervisor: Orchestrating Data and Models
NSF 融合加速器轨道 D:数据管理程序:编排数据和模型
  • 批准号:
    2040718
  • 财政年份:
    2020
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Virtual Data Set Services Enabling New Science at NSF Facilities
虚拟数据集服务在 NSF 设施中实现新科学
  • 批准号:
    1841531
  • 财政年份:
    2018
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Framework: Software: HDR Globus Automate: A Distributed Research Automation Platform
框架:软件:HDR Globus Automate:分布式研究自动化平台
  • 批准号:
    1835890
  • 财政年份:
    2018
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
EAGER: Designing the OSN Software Platform
EAGER:设计 OSN 软件平台
  • 批准号:
    1836357
  • 财政年份:
    2018
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate
BD 辐条:辐条:中西部:协作:集成材料设计 (IMaD):利用、创新和传播
  • 批准号:
    1636950
  • 财政年份:
    2017
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberSEES:Type 2: Framework to Advance Climate, Economics, and Impact Investigations with Information Technology (FACE-IT)
合作研究:Cyber​​SEES:类型 2:利用信息技术推进气候、经济和影响调查的框架 (FACE-IT)
  • 批准号:
    1331922
  • 财政年份:
    2013
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Managing Cloud Usage Allocation and Accounting for the NSF Community
协作研究:管理 NSF 社区的云使用分配和核算
  • 批准号:
    1250555
  • 财政年份:
    2012
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411299
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347321
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411151
  • 财政年份:
    2024
  • 资助金额:
    $ 265.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了