Topics of Immersed Finite Element Methods
浸入式有限元方法主题
基本信息
- 批准号:2005272
- 负责人:
- 金额:$ 4.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interface problems are ubiquitous. When simulations involve multiple materials or multi-physics, interface problems arise. Many real-world problems in fluid mechanics, material science, mechanical engineering, and biomedical engineering are modeled by three-dimensional interface problems. The immersed finite element methods (IFEM) are a class of numerical methods for solving interface problems on interface-unfitted meshes. Two interrelated problems will be investigated in this research project. The first problem aims to design a self-adaptive IFEM based on the a posteriori error estimation. The second problem focuses on development, implementation, and analysis of three-dimensional IFEM.The first problem concerns the study of both residual-based and recovery-based error estimation for various immersed finite element discretizations. These include the immersed finite element approximation in conforming, nonconforming and discontinuous Galerkin frameworks. Rigorous mathematical analysis will be carried out for the reliability and efficiency error estimates of IFEM. The second problem focuses on interface problems of three spatial dimensions. It aims to develop an innovative approach to efficiently construct the three-dimensional immersed finite element functions. These immersed finite element functions will be implemented in various numerical schemes for three-dimensional interface problems. Theoretically, both a priori and a posteriori error estimates will be conducted for new IFEM schemes. Computationally, a three-dimensional IFEM software package will be developed with the feature of adaptive mesh refinement.
界面问题无处不在。当模拟涉及多个材料或多个物理时,就会出现界面问题。流体力学、材料科学、机械工程和生物医学工程中的许多实际问题都是由三维界面问题来模拟的。浸没有限元方法(IFEM)是一类求解界面不拟合网格上界面问题的数值方法。在本研究项目中,将研究两个相互关联的问题。第一个问题旨在设计一种基于后验误差估计的自适应IFEM。第二个问题是关于三维IFEM的发展、实现和分析。第一个问题涉及各种浸没有限元离散的基于残差和基于恢复的误差估计的研究。其中包括协调、非协调和间断Galerkin框架中的浸没有限元近似。将对IFEM的可靠性和效率误差估计进行严格的数学分析。第二个问题集中在三维空间的界面问题上。它的目的是开发一种创新的方法来有效地构造三维浸没有限元函数。这些沉浸的有限元函数将在三维界面问题的各种数值格式中实现。理论上,将对新的IFEM格式进行先验和后验误差估计。在计算上,将开发一个具有自适应网格加密功能的三维IFEM软件包。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces
- DOI:10.3934/era.2021032
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Derrick Jones;Xu Zhang
- 通讯作者:Derrick Jones;Xu Zhang
A class of nonconforming immersed finite element methods for Stokes interface problems
- DOI:10.1016/j.cam.2021.113493
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Derrick Jones;Xu Zhang
- 通讯作者:Derrick Jones;Xu Zhang
A P2-P1 PARTIALLY PENALIZED IMMERSED FINITE ELEMENT METHOD FOR STOKES INTERFACE PROBLEMS
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yuan Chen
- 通讯作者:Yuan Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xu Zhang其他文献
Facets-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets
富铋 Bi5O7I 纳米片的面依赖性光催化 N2 固定
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:9.5
- 作者:
Yang Bai;Liqun Ye;Ting Chen;Li Wang;Xian Shi;Xu Zhang;Chen Dan - 通讯作者:
Chen Dan
Synthesis and Bioactivity Evaluation of 2-Arylbenzimidazole Analogues
2-芳基苯并咪唑类似物的合成及生物活性评价
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Xu Zhang;Fei Hu;Jie Huang;Peng Yu;Erbing Hua - 通讯作者:
Erbing Hua
The improvement of adenovirus vector production by increased expression of coxsackie adenovirus receptor
通过增加柯萨奇腺病毒受体的表达来改进腺病毒载体的生产
- DOI:
10.1007/s10529-009-9971-y - 发表时间:
2009 - 期刊:
- 影响因子:2.7
- 作者:
Xu;Yigang Wang;H. Niu;Xu Zhang;W. Tan - 通讯作者:
W. Tan
Multiple creators of knowledge-intensive service networks: A case study of the Pearl River Delta city-region
知识密集型服务网络的多重创造者:以珠三角城市群为例
- DOI:
10.1177/0042098017700805 - 发表时间:
2018-07 - 期刊:
- 影响因子:4.7
- 作者:
Xu Zhang - 通讯作者:
Xu Zhang
Organophosphate flame retardant TDCPP: A risk factor for renal cancer?
有机磷阻燃剂 TDCPP:肾癌的危险因素?
- DOI:
10.1016/j.chemosphere.2022.135485 - 发表时间:
2022-06 - 期刊:
- 影响因子:8.8
- 作者:
Xuan Zhou;Xiang Zhou;Liangyu Yao;Xu Zhang;Rong Cong;Jiaochen Luan;Tongtong Zhang;Ninghong Song - 通讯作者:
Ninghong Song
Xu Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xu Zhang', 18)}}的其他基金
CAREER: Kirigami-Actuated Adaptive Metasurfaces with Dynamic Tunability enabled by 2D Materials
职业:由 2D 材料实现的具有动态可调性的剪纸驱动自适应超表面
- 批准号:
2239822 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Continuing Grant
Conference: The Seventh Annual Meeting of SIAM Central States Section
会议:SIAM中部国家分会第七届年会
- 批准号:
2224003 - 财政年份:2022
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
RUI: Exciton-Phonon Interactions in Solids based on Time-Dependent Density Functional Perturbation Theory
RUI:基于瞬态密度泛函微扰理论的固体中激子-声子相互作用
- 批准号:
2105918 - 财政年份:2022
- 资助金额:
$ 4.98万 - 项目类别:
Continuing Grant
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
- 批准号:
2110833 - 财政年份:2021
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
Topics of Immersed Finite Element Methods
浸入式有限元方法主题
- 批准号:
1720425 - 财政年份:2017
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
相似海外基金
New perspective of moving-boundary flow analysis by the stress tensor discontinuity-based immersed boundary method
基于应力张量不连续性的浸没边界法进行动边界流分析的新视角
- 批准号:
23H01341 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Floer Homology and Immersed Curve Invariants in Low Dimensional Topology
低维拓扑中的Floer同调和浸没曲线不变量
- 批准号:
2105501 - 财政年份:2021
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
A method for estimating time since death through analysis of substances deposited on the surface of dental enamel in a body immersed
一种通过分析浸泡在水中的尸体牙釉质表面沉积的物质来估算死亡时间的方法
- 批准号:
20K18811 - 财政年份:2020
- 资助金额:
$ 4.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study of value distribution of Gauss maps and its applications to global property of immersed surfaces in space forms
高斯图值分布及其在空间形式浸没曲面全局特性中的应用研究
- 批准号:
19K03463 - 财政年份:2019
- 资助金额:
$ 4.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lubricated Immersed Boundary Method: Numerical Analysis, Benchmarking, and Applications
润滑浸入边界法:数值分析、基准测试和应用
- 批准号:
1913093 - 财政年份:2019
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
Immersed in a coral reef with Let's Talk Science in Ottawa
与渥太华的 Lets Talk Science 一起沉浸在珊瑚礁中
- 批准号:
542198-2019 - 财政年份:2019
- 资助金额:
$ 4.98万 - 项目类别:
PromoScience Supplement for Science Literacy Week
NRI:FND:COLLAB: Girls Immersed in Robotics Learning Simulations (GIRLS)
NRI:FND:COLLAB:沉浸在机器人学习模拟中的女孩 (GIRLS)
- 批准号:
1830179 - 财政年份:2018
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
Accurate interface capturing for two-phase flow simulation with immersed boundary method
使用浸入边界法精确捕捉两相流模拟界面
- 批准号:
18K03937 - 财政年份:2018
- 资助金额:
$ 4.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NRI:FND:COLLAB: Girls Immersed in Robotics Learning Simulations (GIRLS)
NRI:FND:COLLAB:沉浸在机器人学习模拟中的女孩 (GIRLS)
- 批准号:
1830450 - 财政年份:2018
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
Topics of Immersed Finite Element Methods
浸入式有限元方法主题
- 批准号:
1720425 - 财政年份:2017
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant














{{item.name}}会员




