Collaborative Research: CNS Core: Small: Understanding Per-Hop Flow Control
合作研究:CNS 核心:小型:了解每跳流量控制
基本信息
- 批准号:2006346
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research concerns how best to manage contention for data center network resources. Data centers are among the fastest growing segment of the computer industry, and networks connect the computers in a data center to allow them to communicate. Just as roads can become congested when too many people try to use them at the same time, data center networks can become congested when too many applications try to send data at the same time. Most networks today use an end to end control mechanism - as the network becomes congested, it sends signals back to the computers to slow down. It might seem that faster networks would help, but the opposite is true - the amount of network communication is also rapidly increasing, and more data can be sent before the feedback mechanism can kick in to control traffic. This project (a collaborative project between investigators at the University of Washington and Massachusetts Institute of Technology) is to explore a different approach, where feedback occurs within the network, hop-by-hop between network switches, and just for those applications that are sending too fast.The challenges for congestion control for data centers include rapidly increasing workload demand, ever faster links, small average transfer sizes, extremely bursty traffic, and limited switch buffer capacity. Existing end-to-end congestion control systems are far from optimal in these settings, and this is particularly noticeable for latency-sensitive applications. Many data center operators compensate by using priorities and/or running their networks at very low average utilization, but this raises costs without fully solving the problem. This research attempts to understand the benefits and limits of an alternative approach to congestion control for data center networks, based on per-hop flow control. The research will (i) develop a theoretical framework to quantify the difference between the two different approaches, (ii) demonstrate a practical implementation on modern programmable data center network switches, and (iii) understand and develop solutions for the engineering challenges of using per-hop flow control in data centers.If successful, the research will help enable an emerging class of latency-sensitive applications to be deployed within and across data centers and at lower cost, for bursty traffic patterns and emerging very high bandwidth networks being developed in industry. Data center network technologies are rapidly evolving, and so a key aspect of this research is to develop materials to help train undergraduate and graduate students for the challenges that latency-sensitive applications pose for data center networks.The project website, https://www.cs.washington.edu/homes/tom/backpressure/, contains copies of all project papers, presentations, source code, simulations, experimental results, and teaching materials. Additional material will be placed there as the project progresses, and will be maintained for a minimum of ten years after the completion of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究关注如何最好地管理数据中心网络资源的争用。数据中心是计算机行业中增长最快的部分之一,网络连接数据中心中的计算机以允许它们进行通信。就像当太多人试图同时使用道路时,道路会变得拥堵一样,当太多应用程序试图同时发送数据时,数据中心网络也会变得拥堵。今天的大多数网络都使用端到端控制机制-当网络变得拥塞时,它会向计算机发送信号以减慢速度。看起来更快的网络会有所帮助,但事实恰恰相反-网络通信量也在迅速增加,在反馈机制可以控制流量之前,可以发送更多的数据。这个项目(华盛顿大学和马萨诸塞州理工学院的研究人员之间的一个合作项目)是探索一种不同的方法,其中反馈发生在网络内,在网络交换机之间逐跳,并且只针对那些发送太快的应用程序。数据中心拥塞控制的挑战包括快速增加的工作负载需求,越来越快的链路,小的平均传输大小,极其突发的业务以及有限的交换机缓冲器容量。现有的端到端拥塞控制系统在这些设置中远非最佳,这对于延迟敏感的应用程序尤其明显。许多数据中心运营商通过使用优先级和/或以非常低的平均利用率运行网络来进行补偿,但这会增加成本,而不会完全解决问题。本研究试图了解的好处和限制的数据中心网络的拥塞控制的替代方法,基于每跳流量控制。该研究将(i)开发一个理论框架来量化两种不同方法之间的差异,(ii)展示现代可编程数据中心网络交换机的实际实施,以及(iii)了解并开发数据中心中使用每跳流量控制的工程挑战的解决方案。如果成功,该研究将有助于使一种新兴的对延迟敏感的应用程序能够以较低的成本部署在数据中心内和数据中心之间,用于突发业务模式和正在工业中开发的新兴甚高带宽网络。数据中心网络技术正在迅速发展,因此本研究的一个关键方面是开发材料,以帮助培训本科生和研究生应对延迟敏感型应用程序对数据中心网络提出的挑战。该项目网站https://www.cs.washington.edu/homes/tom/backpressure/包含所有项目论文、演示文稿、源代码、模拟、实验结果和教学材料的副本。随着项目的进展,更多的材料将被放置在那里,并将在项目完成后至少保留十年。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Tail Latency Estimation for Data Center Networks
数据中心网络的可扩展尾部延迟估计
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhao, Kevin;Goyal, Prateesh;Alizadeh, Mohammad;Anderson, Thomas E.
- 通讯作者:Anderson, Thomas E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Anderson其他文献
Colt ? ? ? ? ? ? ◦ DTAG ? ◦ • ◦ ? ? ? ? ! ◦ ? ? ? ◦ ◦ ? ? Eqip ? ? ? ? ? ?
? ? ?
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Neil Spring;Ratul Mahajan;Thomas Anderson - 通讯作者:
Thomas Anderson
Personalizing the Training of Attention: Predicting Effectiveness of Meditation using Traits and Abilities
个性化注意力训练:利用特征和能力预测冥想的有效性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Thomas Anderson - 通讯作者:
Thomas Anderson
Whose responsibility?
- DOI:
10.1016/s0033-3506(71)80031-8 - 发表时间:
1971-03-01 - 期刊:
- 影响因子:
- 作者:
Thomas Anderson - 通讯作者:
Thomas Anderson
Microdosing psychedelics: Subjective benefits and challenges, substance testing behavior, and the relevance of intention
微剂量迷幻药:主观益处和挑战、物质测试行为以及意图的相关性
- DOI:
10.1177/0269881120953994 - 发表时间:
2020 - 期刊:
- 影响因子:4.1
- 作者:
Rotem Petranker;Thomas Anderson;L. Maier;M. Barratt;J. Ferris;A. Winstock - 通讯作者:
A. Winstock
Amiodarone toxicity: myopathy and neuropathy.
胺碘酮毒性:肌病和神经病。
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:4.8
- 作者:
R. F. Roth;Hideo H. Itabashi;James Louie;Thomas Anderson;Kenneth A. Narahara - 通讯作者:
Kenneth A. Narahara
Thomas Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Anderson', 18)}}的其他基金
Understanding host-pathogen interactions using a new synthetic theoretical framework for organismal nutrition
使用新的有机营养综合理论框架了解宿主与病原体的相互作用
- 批准号:
BB/V01661X/1 - 财政年份:2022
- 资助金额:
$ 24.99万 - 项目类别:
Research Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2105868 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: NGSDI: Foundations of Clean and Balanced Datacenters: Treehouse
合作研究:NGSDI:清洁和平衡数据中心的基础:Treehouse
- 批准号:
2104548 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Cross Layer File Systems
CNS 核心:媒介:协作研究:跨层文件系统
- 批准号:
1856636 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
CSR: CC: Large: A High-Performance Data Center Operating System
CSR:CC:大型:高性能数据中心操作系统
- 批准号:
1518702 - 财政年份:2015
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
Integrated Marine Biogeochemical Modelling Network to Support UK Earth System Research
综合海洋生物地球化学模拟网络支持英国地球系统研究
- 批准号:
NE/K001299/1 - 财政年份:2012
- 资助金额:
$ 24.99万 - 项目类别:
Research Grant
CSR: Medium: Very Large Scale Consistent DHTs
CSR:中:超大规模一致的 DHT
- 批准号:
0963754 - 财政年份:2010
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
Student Travel Support for the Seventh Symposium on Networked Systems Design and Implementation (NSDI 2010); April 2010; San Jose, CA
第七届网络系统设计与实现研讨会的学生旅行支持(NSDI 2010);
- 批准号:
1035987 - 财政年份:2010
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Regional Ecosystem & Biogeochemical Impacts of Ocean Acidification - a modelling study.
区域生态系统
- 批准号:
NE/H017089/1 - 财政年份:2010
- 资助金额:
$ 24.99万 - 项目类别:
Research Grant
FIA: Collaborative Research: NEBULA: A Future Internet That Supports Trustworthy Cloud Computing
FIA:合作研究:NEBULA:支持可信云计算的未来互联网
- 批准号:
1040663 - 财政年份:2010
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant