Collaborative Research:CNS Core: Small: Towards Efficient Cloud Services

合作研究:CNS 核心:小型:迈向高效的云服务

基本信息

项目摘要

Cloud computing frameworks enable a wide range of services while sharing computation resources and infrastructure costs. To achieve these benefits, cloud computing frameworks rely on layers of abstractions to reduce the complexity of distributed and heterogeneous computational infrastructure. Abstractions hide resource management complexities and improve programmability. However, abstractions make cloud frameworks less observable, resulting in various forms of inefficiencies. This project will address the challenges of practical cloud monitoring techniques to guide cloud application development and system design.This project will explore the inefficiency patterns in cloud computing infrastructures and applications. More specifically, it will provide novel measurement techniques to enable monitoring these inefficiencies across the cloud layers of abstraction. Additionally, the project will develop tools that will provide actionable insights for high-performance cloud frameworks and application development. This project has three thrusts. First, it will measure language-level abstractions for intra-application inefficiencies. Second, it will explore the inefficient communication patterns among microservices for inter-service optimization. Third, it will develop tools to analyze inefficiencies in the entire stack of cloud software layers of abstraction.This project will bridge the knowledge gap between application developers and system designers to provide more efficient cloud environments. It will advance the state-of-the-art cloud monitoring techniques and address the current and future challenges in the cloud computing community. The tools developed from this project will have broad interest from industry, research institutes, and laboratories for efficient code execution and high system throughput. Furthermore, the project will disseminate the obtained knowledge through hands-on training sessions and tutorials. Finally, the project will facilitate curriculum development with a particular focus on involving minority and under-represented students.The project will maintain a website at https://www.probir.info/cloudprof. The website will host all the project outcomes, including the publications, open-source code, toolkits, datasets, documentation, and tutorials. The website will be accessible to the public throughout the project lifetime and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
云计算框架支持广泛的服务,同时共享计算资源和基础设施成本。为了实现这些好处,云计算框架依靠抽象层来降低分布式和异构性计算基础设施的复杂性。抽象隐藏了资源管理的复杂性,并提高了可编程性。然而,抽象使得云框架更难被观察到,从而导致各种形式的效率低下。该项目将解决实用的云监控技术的挑战,以指导云应用程序的开发和系统设计。该项目将探索云计算基础设施和应用程序中的低效模式。更具体地说,它将提供新的测量技术,以实现跨云抽象层监控这些低效。此外,该项目还将开发工具,为高性能云框架和应用程序开发提供可操作的见解。这个项目有三个推力。首先,它将衡量应用程序内部效率低下的语言级抽象。第二,探索微服务间低效的通信模式,以实现服务间的优化。第三,它将开发工具来分析整个云软件抽象层堆栈中的低效问题。该项目将弥合应用程序开发人员和系统设计人员之间的知识鸿沟,以提供更高效的云环境。它将推进最先进的云监控技术,并解决云计算社区当前和未来的挑战。从该项目开发的工具将受到行业、研究机构和实验室的广泛关注,以实现高效的代码执行和高系统吞吐量。此外,该项目将通过实际培训课程和教程传播所获得的知识。最后,该项目将促进课程开发,特别侧重于让少数族裔和代表性不足的学生参与。该项目将在https://www.probir.info/cloudprof.上建立一个网站该网站将托管所有项目成果,包括出版物、开放源码、工具包、数据集、文档和教程。该网站将在整个项目期间和之后向公众开放。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Empirical Study of High Performance Computing (HPC) Performance Bugs
M icro P rof : Code-level Attribution of Unnecessary Data Transfer in Microservice Applications
Micro Prof:微服务应用程序中不必要的数据传输的代码级归因
Designing Secure Performance Metrics for Last Level Cache
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Probir Roy其他文献

LWPTool: A Lightweight Profiler to Guide Data Layout Optimization
LWPTool:指导数据布局优化的轻量级分析器
LibProf: A Python Profiler for Improving Cold Start Performance in Serverless Applications
LibProf:用于提高无服务器应用程序冷启动性能的 Python 分析器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Syed Salauddin Mohammad Tariq;Ali Al Zein;Soumya Sripad Vaidya;Arati D. Khanolkar;Probir Roy
  • 通讯作者:
    Probir Roy
Lightweight detection of cache conflicts
缓存冲突的轻量级检测
SMT-Aware Instantaneous Footprint Optimization
SMT 感知瞬时足迹优化
A mixed integer 0–1 programming heuristic for resource allocation in a decentralized system
去中心化系统中资源分配编程的混合整数 0-1 启发式
  • DOI:
    10.1007/bfb0042802
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Probir Roy
  • 通讯作者:
    Probir Roy

Probir Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
  • 批准号:
    2318573
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了