Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion

合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础

基本信息

  • 批准号:
    2006612
  • 负责人:
  • 金额:
    $ 24.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

An accurate characterization of the statistical behavior of wireless networks is crucial in the analysis, design, and deployment of real-world wireless networks. In the past decade, point processes without spatial repulsion, such as Poisson point processes, have been intensively applied to model and analyze the performances of wireless networks. However, these point processes may not be suitable for modeling and analyzing real-world wireless networks with diverse types of spatial repulsion. This project proposes two families of point processes generalizing various known repulsive processes, which are able to accurately characterize real-world repulsive phenomena in a wireless network such as non-linear and/or asymmetric repulsion. In addition, contrary to the existing results in the literature that are mostly semi-analytical or numerical, the project aims at explicit closed-form characterizations by advanced tools from stochastic geometry and random matrix theory. The results in this project will provide key insights and a new benchmark in the design of various wireless networks.The proposed research resides in the interdisciplinary area of stochastic geometry and wireless networks. The considered point processes are able to characterize diverse nodal repulsion phenomena in ultra-dense wireless networks so as to fundamentally improve the existing modeling and analysis framework of wireless networks with spatial randomness where the impact of node repulsion is ignored. The project has also been motivated by the fact that state-of-art analytical tools in the mathematics community are far from being fully utilized in the wireless networking community. The project aims at the analytical characterization of performance metrics including user association statistics, interference statistics, link rate, and distributed learning, which are based on the closed-form evaluations of some fundamental performance measures. Among other consequences, the proposed research will lead to new scaling laws useful in the deployment of ultra-dense wireless networks for practitioners. The synergy of the PIs brings about the latest ideas and approaches from stochastic geometry and random matrix theory aiming at new breakthroughs in understanding the fundamental behavior of wireless networks. The outcome of the proposed research also has applications in other domains, such as in machine learning and data science, where the project results offer new algorithms for sampling, marginalization, conditioning, and other inference tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
准确表征无线网络的统计行为对于分析、设计和部署真实世界的无线网络至关重要。在过去的十年中,没有空间排斥的点过程,如泊松点过程,已被广泛应用于无线网络的建模和性能分析。然而,这些点过程可能不适合于建模和分析现实世界的无线网络与不同类型的空间排斥。该项目提出了两个家庭的点过程概括各种已知的排斥过程,这是能够准确地描述现实世界的排斥现象,在无线网络中,如非线性和/或不对称排斥。此外,与文献中大多是半解析或数值的现有结果相反,该项目旨在通过随机几何和随机矩阵理论的先进工具来明确封闭形式的特征。本计画的研究结果将为各种无线网路的设计提供关键的见解与新的基准,而本计画的研究则属于随机几何与无线网路的跨学科领域。所考虑的点过程能够表征超密集无线网络中的各种节点排斥现象,从而从根本上改善现有的空间随机性无线网络的建模和分析框架,其中节点排斥的影响被忽略。该项目的动机还在于,数学界最先进的分析工具远未在无线网络界得到充分利用。该项目旨在分析性能指标的特征,包括用户关联统计,干扰统计,链路速率和分布式学习,这是基于一些基本性能指标的封闭式评估。除其他后果外,拟议的研究将导致新的缩放定律,可用于部署超密集无线网络的从业者。PI的协同作用带来了随机几何和随机矩阵理论的最新思想和方法,旨在在理解无线网络的基本行为方面取得新的突破。该项目的研究成果还可应用于其他领域,如机器学习和数据科学,为采样、边缘化、调节和其他推理任务提供了新的算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exact variance of von Neumann entanglement entropy over the Bures-Hall measure
冯·诺依曼纠缠熵相对于 Bures-Hall 度量的精确方差
  • DOI:
    10.1103/physreve.102.062128
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Wei, Lu
  • 通讯作者:
    Wei, Lu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu Wei其他文献

Phase purification of GaAs nanowires by prolonging the growth duration in MBE
通过延长 MBE 中的生长持续时间实现 GaAs 纳米线的相纯化
  • DOI:
    10.1039/c6tc05209f
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhou Chen;Zheng Kun;Liao Zhi-Ming;Chen Ping-Ping;Lu Wei;Zou Jin
  • 通讯作者:
    Zou Jin
On some conjectures about optimal ternary cyclic codes
关于最优三进制循环码的一些猜想
  • DOI:
    10.1007/s10623-019-00679-w
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu Yan;Cao Xiwang;Lu Wei
  • 通讯作者:
    Lu Wei
Insight into the Formation of Co@Co2C Catalysts for Direct Synthesis of Higher Alcohols and Olefins from Syngas
深入探讨用于从合成气直接合成高级醇和烯烃的 Co@Co2C 催化剂的形成
  • DOI:
    10.1021/acscatal.7b02403
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Zhao Ziang;Lu Wei;Yang Ruoou;Zhu Hejun;Dong Wenda;Sun Fanfei;Jiang Zheng;Lyu Yuan;Liu Tao;Du Hong;Ding Yunjie
  • 通讯作者:
    Ding Yunjie
An isotopic strategy to investigate the role of water vapor in the oxidation of 1,2-dichloroethane over the Ru/WO3 or Ru/TiO2 catalyst
研究水蒸气在 Ru/WO3 或 Ru/TiO2 催化剂氧化 1,2-二氯乙烷中的作用的同位素策略
  • DOI:
    10.1016/j.apcatb.2021.121037
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaohui Yu;Lingyun Dai;Jiguang Deng;Yuxi Liu;Lin Jing;Xing Zhang;Ruyi Gao;Zhiquan Hou;Lu Wei;Hongxing Dai
  • 通讯作者:
    Hongxing Dai
Fluorescence Resonance Energy Transfer Visualization of Molecular Delivery from Polymeric Micelles
聚合物胶束分子传递的荧光共振能量转移可视化
  • DOI:
    10.1166/jbn.2018.2585
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Liang Yan;Huo Qingqing;Lu Wei;Jiang Lutao;Gao Wenxia;Xu Long;Han Shangcong;Cao Jie;Zhang Tingting;Sun Yong;He Bin
  • 通讯作者:
    He Bin

Lu Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu Wei', 18)}}的其他基金

CAREER: Imaging the Chemical Nature of Intracellular Phase Separation by Functional Stimulated Raman Scattering Spectro-microscopy
职业:通过功能受激拉曼散射光谱显微镜对细胞内相分离的化学性质进行成像
  • 批准号:
    2240092
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Continuing Grant
FET: Small: Entanglement Estimation for Quantum Computing
FET:小型:量子计算的纠缠估计
  • 批准号:
    2306968
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
  • 批准号:
    2150486
  • 财政年份:
    2021
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 24.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了