Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs

合作研究:AF:小:随机输入的组合优化

基本信息

  • 批准号:
    2006953
  • 负责人:
  • 金额:
    $ 24.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

A central theme in algorithm design is that of making decisions in the presence of uncertainty. In contrast to the usual setting where all the information is available up-front, often the input is not known precisely when we have to make the decisions, but is revealed along the way. We face such decision-making situations all the time, e.g., when deciding on driving routes in the presence of traffic, or dividing our time between chores that take uncertain amounts of time. This project aims to design algorithms for a wide class of such problems using only predictions about the future input. Research on decision-making under uncertainty started nearly seventy years ago, but it has gained much momentum in recent years. This is partly due to numerous applications in scheduling, transportation, electronic commerce etc., and partly because of the vast amounts of data that allow us to make good predictions about the future. This project will model a collection of fundamental and practically relevant problems in this area, and develop techniques to obtain algorithms with provable guarantees on their performance. Research results from this project can bring together communities in computer science with those in operations research, stochastic control and machine learning. The educational component of this project includes the engagement of graduate and undergraduate students in research, and the development of a new graduate course in this subject.The project will model predictions about the uncertain input using probabilistic models. This approach, called stochastic optimization, is one of the most widely-used approaches to model uncertainty. This project aims to make progress on basic problems in scheduling, path-planning and routing, packing and covering, and submodular maximization, in this stochastic setting. The focus of this project will be on two kinds of algorithms for optimization in these settings: non-adaptive algorithms (where all decisions are made in one shot), and adaptive ones (where the decisions are made incrementally, based on random outcomes observed along the way). One of the goals is to broaden the scope of investigation further by considering settings where the underlying random quantities exhibit correlations; this is in contrast to the usual assumptions of independence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算法设计的一个中心主题是在不确定性的情况下做出决策。与所有信息都预先可用的通常设置相反,通常我们在必须做出决策时并不精确地知道输入,而是在沿着显示。我们一直面临这样的决策情况,例如,当在交通中决定驾驶路线时,或者在不确定时间的家务中分配我们的时间时。这个项目的目的是设计一个广泛的一类这样的问题,只使用对未来输入的预测算法。关于不确定性决策的研究始于近70年前,但近年来获得了很大的发展势头。这部分是由于在调度、运输、电子商务等方面的大量应用,部分原因是大量的数据使我们能够对未来做出正确的预测。这个项目将模拟一系列基本的和实际相关的问题在这一领域,并开发技术,以获得算法与可证明的保证其性能。该项目的研究成果可以将计算机科学领域与运筹学、随机控制和机器学习领域的社区聚集在一起。该项目的教育部分包括研究生和本科生参与研究,并在这一主题中开发一个新的研究生课程。该项目将使用概率模型对不确定输入进行建模预测。这种方法称为随机优化,是最广泛使用的不确定性建模方法之一。这个项目的目的是取得进展的基本问题,在调度,路径规划和路由,包装和覆盖,和子模块最大化,在这种随机设置。这个项目的重点将是在这些设置中的两种优化算法:非自适应算法(所有决策都是一次性做出的),和自适应算法(决策是增量式的,基于沿着观察到的随机结果)。目标之一是通过考虑潜在随机量呈现相关性的设置来进一步扩大调查范围;这与通常的独立性假设相反。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Searching with Predictions
  • DOI:
    10.48550/arxiv.2212.14220
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sid Banerjee;Vincent Cohen-Addad;Anupam Gupta;Zhou Li
  • 通讯作者:
    Sid Banerjee;Vincent Cohen-Addad;Anupam Gupta;Zhou Li
Optimal Bounds for the k -cut Problem
k 割问题的最优界
  • DOI:
    10.1145/3478018
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gupta, Anupam;Harris, David G.;Lee, Euiwoong;Li, Jason
  • 通讯作者:
    Li, Jason
Random Order Online Set Cover is as Easy as Offline
随机订购在线套装封面与离线一样简单
Chasing Convex Bodies with Linear Competitive Ratio
以线性竞比追逐凸体
  • DOI:
    10.1145/3450349
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Argue, C. J.;Gupta, Anupam;Tang, Ziye;Guruganesh, Guru
  • 通讯作者:
    Guruganesh, Guru
A Local Search-Based Approach for Set Covering
基于局部搜索的集合覆盖方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anupam Gupta其他文献

Probing hard color-singlet exchange in pp̄ collisions at √s = 630 GeV and 1800 GeV
探测 √s = 630 GeV 和 1800 GeV pp̄ 碰撞中的硬颜色-单线态交换
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Abbott;M. Abolins;V. Abramov;B. Acharya;I. Adam;D. Adams;M. Adams;S. Ahn;H. Aihara;G. Alves;N. Amos;E. Anderson;R. Astur;M. Baarmand;V. Babintsev;L. Babukhadia;A. Baden;B. Baldin;S. Banerjee;J. Bantly;E. Barberis;P. Baringer;J. Bartlett;A. Belyaev;S. Beri;I. Bertram;V. Bezzubov;P. Bhat;V. Bhatnagar;M. Bhattacharjee;N. Biswas;G. Blazey;S. Blessing;P. Bloom;A. Boehnlein;N. Bojko;F. Borcherding;C. Boswell;A. Brandt;R. Breedon;R. Brock;A. Bross;D. Buchholz;V. S. Burtovoǐ;J. Butler;W. Carvalho;D. Casey;Z. Casilum;H. Castilla;D. Chakraborty;S. Chang;S. Chekulaev;Wei Chen;Suyong Choi;S. Chopra;B. Choudhary;J. Christenson;M. Chung;D. Claes;A. Clark;W. G. Cobau;J. Cochran;L. Coney;W. Cooper;C. Cretsinger;D. Cullen;M. Cummings;D. Cutts;O. Dahl;K. Davis;K. De;K. D. Signore;M. Demarteau;D. Denisov;S. Denisov;H. Diehl;M. Diesburg;G. D. Loreto;P. Draper;Y. Ducros;L. Dudko;S. Dugad;A. Dyshkant;D. Edmunds;J. Ellison;V. Elvira;R. Engelmann;S. Eno;G. Eppley;P. Ermolov;O. Eroshin;V. Evdokimov;T. Fahland;M. Fatyga;S. Feher;D. Fein;T. Ferbel;G. Finocchiaro;H. Fisk;Y. Fisyak;E. Flattum;G. Forden;M. Fortner;K. Frame;S. Fuess;E. Gallas;A. Galyaev;P. Gartung;V. Gavrilov;T. Geld;R. Genik;K. Genser;C. Gerber;Y. Gershtein;B. Gibbard;B. Gobbi;B. Gomez;G. Gomez;P. Goncharov;J. Solı́s;H. Gordon;L. Goss;K. Gounder;A. Goussiou;N. Graf;P. Grannis;D. Green;H. Greenlee;S. Grinstein;P. Grudberg;S. Grünendahl;G. Guglielmo;J. Guida;J. Guida;Anupam Gupta;S. N. Gurzhiev;G. Gutiérrez;P. Gutierrez;N. Hadley;H. Haggerty;S. Hagopian;V. Hagopian;K. Hahn;R. E. Hall;P. Hanlet;S. Hansen;J. Hauptman;D. Hedin;A. Heinson;U. Heintz;R. Hernández;T. Heuring;R. Hirosky;J. Hobbs;B. Hoeneisen;J. S. Hoftun;F. Hsieh;H. Ting;H. Tong;A. Ito;E. James;J. Jaques;S. Jerger;R. Jesik;T. Joffe;K. Johns;M. Johnson;A. Jonckheere;M. Jones;H. Jöstlein;S. Jun;C. Jung;S. Kahn;G. Kalbfleisch;D. Karmanov;D. Karmgard;R. Kehoe;M. Kelly;S. Kim;B. Klima;C. Klopfenstein;W. Ko;J. Kohli;D. Koltick;A. V. Kostritskiy;J. Kotcher;A. Kotwal;A. Kozelov;E. Kozlovsky;J. Krane;M. Krishnaswamy;S. Krzywdzinski;S. Kuleshov;Y. Kulik;S. Kunori;F. Landry;G. Landsberg;B. Lauer;A. Leflat;Jiang Li;Q. Li;J. Lima;D. Lincoln;S. Linn;J. Linnemann;R. Lipton;F. Lobkowicz;S. Loken;A. Lucotte;L. Lueking;A. Lyon;A. Maciel;R. Madaras;R. Madden;L. Magaña;V. Manankov;S. Mani;H. Mao;R. Markeloff;T. Marshall;M. Martin;K. Mauritz;B. May;A. Mayorov;R. Mccarthy;J. Mcdonald;T. Mckibben;J. McKinley;T. Mcmahon;H. Melanson;M. Merkin;K. Merritt;C. Miao;H. Miettinen;A. Mincer;C. Mishra;N. Mokhov;N. Mondal;H. Montgomery;P. Mooney;M. Mostafá;H. Motta;C. Murphy;F. Nang;M. Narain;V. S. Narasimham;A. Narayanan;H. Neal;J. Negret;P. Némethy;D. Norman;L. Oesch;V. Oguri;E. Oliveira;E. Oltman;N. Oshima;D. Owen;P. Padley;A. Para;Y. M. Park;R. Partridge;N. Parua;M. Paterno;B. Pawlik;J. Perkins;Marco Peters;R. Piegaia;H. Piekarz;Y. Pischalnikov;B. Pope;H. Prosper;S. Protopopescu;J. Qian;P. Z. Quintas;R. Raja;S. Rajagopalan;O. Ramirez;S. Reucroft;M. Rijssenbeek;T. Rockwell;M. Roco;P. Rubinov;R. Ruchti;J. Rutherfoord;A. Sanchez;A. Santoro;L. Sawyer;R. Schamberger;H. Schellman;J. Sculli;E. Shabalina;C. Shaffer;H. Shankar;R. K. Shivpuri;D. Shpakov;M. Shupe;H. Singh;J. Singh;V. Sirotenko;E. Smith;R. Smith;R. Snihur;G. Snow;J. Snow;S. Snyder;J. Solomon;M. Sosebee;N. Sotnikova;M. Souza;G. Steinbrück;R. Stephens;M. L. Stevenson;D. Stewart;F. Stichelbaut;D. Stoker;V. Stolin;D. Stoyanova;M. Strauss;K. Streets;M. Strovink;A. Sznajder;P. Tamburello;J. Tarazi;M. Tartaglia;T. Thomas;J. Thompson;T. Trippe;P. Tuts;V. Vaniev;N. Varelas;E. Varnes;D. Vititoe;A. Volkov;A. Vorobiev;H. Wahl;G. Wang;J. Warchoł;G. Watts;M. Wayne;H. Weerts;A. White;J. White;J. Wightman;S. Willis;S. Wimpenny;J. Wirjawan;J. Womersley;E. Won;D. Wood;Z. Wu;R. Yamada;P. Yamin;T. Yasuda;P. Yepes;K. Yip;C. Yoshikawa;S. Youssef;J. Yu;Y. Yu;B. Zhang;Y. Zhou;Z. Zhou;Z. H. Zhu;M. Zielinski;D. Zieminska;A. Zieminski;E. Zverev;A. Zylberstejn
  • 通讯作者:
    A. Zylberstejn
Random-Order Models
随机顺序模型
Efficient cost-sharing mechanisms for prize-collecting problems
针对奖品收集问题的有效成本分摊机制
  • DOI:
    10.1007/s10107-014-0781-1
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Anupam Gupta;J. Könemann;S. Leonardi;R. Ravi;G. Schäfer
  • 通讯作者:
    G. Schäfer
Coordinated Sampling sans Origin-Destination Identifiers : Algorithms , Analysis , and Evaluation
无起点-终点标识符的协调采样:算法、分析和评估
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vyas Sekar;Anupam Gupta;M. Reiter;Hui Zhang
  • 通讯作者:
    Hui Zhang
Chasing convex bodies with linear competitive ratio (invited paper)
线性竞争比追逐凸体(特邀论文)
  • DOI:
    10.1145/3406325.3465354
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Argue;Anupam Gupta;Guru Guruganesh;Ziye Tang
  • 通讯作者:
    Ziye Tang

Anupam Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anupam Gupta', 18)}}的其他基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
NSF: STOC 2024 Conference Student Travel Support
NSF:STOC 2024 会议学生旅行支持
  • 批准号:
    2421504
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
  • 批准号:
    2224718
  • 财政年份:
    2022
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    1955785
  • 财政年份:
    2020
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
AF: Small: New Approaches for Approximation and Online Algorithms
AF:小:近似和在线算法的新方法
  • 批准号:
    1907820
  • 财政年份:
    2019
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Metric Embeddings and Partitioning for Minor-Closed Graph Families
CCF-BSF:AF:小:次封闭图族的度量嵌入和分区
  • 批准号:
    1617790
  • 财政年份:
    2016
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
BSF: 2014414: New Challenges and Perspectives in Online Algorithms
BSF:2014414:在线算法的新挑战和前景
  • 批准号:
    1540541
  • 财政年份:
    2015
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms for Uncertain Environments and Graph Partitioning
AF:小:不确定环境和图分区的近似算法
  • 批准号:
    1319811
  • 财政年份:
    2013
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Future Directions in Approximation Algorithms Research
AF:小:近似算法研究的未来方向
  • 批准号:
    1016799
  • 财政年份:
    2010
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Emerging Directions in Network Design and Optimization
协作研究:网络设计和优化的新兴方向
  • 批准号:
    0729022
  • 财政年份:
    2007
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了