Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs

合作研究:AF:小:随机输入的组合优化

基本信息

  • 批准号:
    2006953
  • 负责人:
  • 金额:
    $ 24.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

A central theme in algorithm design is that of making decisions in the presence of uncertainty. In contrast to the usual setting where all the information is available up-front, often the input is not known precisely when we have to make the decisions, but is revealed along the way. We face such decision-making situations all the time, e.g., when deciding on driving routes in the presence of traffic, or dividing our time between chores that take uncertain amounts of time. This project aims to design algorithms for a wide class of such problems using only predictions about the future input. Research on decision-making under uncertainty started nearly seventy years ago, but it has gained much momentum in recent years. This is partly due to numerous applications in scheduling, transportation, electronic commerce etc., and partly because of the vast amounts of data that allow us to make good predictions about the future. This project will model a collection of fundamental and practically relevant problems in this area, and develop techniques to obtain algorithms with provable guarantees on their performance. Research results from this project can bring together communities in computer science with those in operations research, stochastic control and machine learning. The educational component of this project includes the engagement of graduate and undergraduate students in research, and the development of a new graduate course in this subject.The project will model predictions about the uncertain input using probabilistic models. This approach, called stochastic optimization, is one of the most widely-used approaches to model uncertainty. This project aims to make progress on basic problems in scheduling, path-planning and routing, packing and covering, and submodular maximization, in this stochastic setting. The focus of this project will be on two kinds of algorithms for optimization in these settings: non-adaptive algorithms (where all decisions are made in one shot), and adaptive ones (where the decisions are made incrementally, based on random outcomes observed along the way). One of the goals is to broaden the scope of investigation further by considering settings where the underlying random quantities exhibit correlations; this is in contrast to the usual assumptions of independence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算法设计中的一个中心主题是在不确定性存在下做出决策。与通常可以使用所有信息可用的通常环境相反,通常在我们必须做出决策时确切地知道输入,而是在途中揭示的。我们一直都面临这样的决策情况,例如,在交通面前决定驾驶路线时,或者将我们的时间分配在花费不确定时间的琐事之间。该项目的目的是仅使用对未来输入的预测来为各种此类问题设计算法。不确定性下的决策研究的研究始于近70年前,但近年来它已经获得了很多动力。这部分是由于在调度,运输,电子商务等方面的众多申请,部分原因是大量数据使我们能够对未来做出良好的预测。该项目将模拟该领域的基本和实际相关问题的集合,并开发技术以获取具有可证明其性能保证的算法。该项目的研究结果可以将计算机科学的社区与运营研究,随机控制和机器学习的社区汇集在一起​​。该项目的教育组成部分包括研究生和本科生参与研究,以及在此主题中开发新的研究生课程。该项目将使用概率模型对不确定输入的预测进行建模。这种称为随机优化的方法是建模不确定性的最广泛使用的方法之一。该项目旨在在此随机环境中的调度,路径规划和路由,包装和覆盖以及supperdular最大化方面的基本问题取得进展。该项目的重点将放在在这些设置中进行优化的两种算法:非自适应算法(其中所有决策都一击做出)和自适应算法(基于在途中观察到的随机结果逐渐做出决策)。目标之一是通过考虑潜在的随机数量表现出相关性的环境,进一步扩大调查范围;这与普通的独立假设相反。该奖项反映了NSF的法定使命,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来评估值得支持的。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Searching with Predictions
  • DOI:
    10.48550/arxiv.2212.14220
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sid Banerjee;Vincent Cohen-Addad;Anupam Gupta;Zhou Li
  • 通讯作者:
    Sid Banerjee;Vincent Cohen-Addad;Anupam Gupta;Zhou Li
Optimal Bounds for the k -cut Problem
k 割问题的最优界
  • DOI:
    10.1145/3478018
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gupta, Anupam;Harris, David G.;Lee, Euiwoong;Li, Jason
  • 通讯作者:
    Li, Jason
Chasing Convex Bodies with Linear Competitive Ratio
以线性竞比追逐凸体
  • DOI:
    10.1145/3450349
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Argue, C. J.;Gupta, Anupam;Tang, Ziye;Guruganesh, Guru
  • 通讯作者:
    Guruganesh, Guru
Random Order Online Set Cover is as Easy as Offline
随机订购在线套装封面与离线一样简单
A Local Search-Based Approach for Set Covering
基于局部搜索的集合覆盖方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anupam Gupta其他文献

Coordinated Sampling sans Origin-Destination Identifiers : Algorithms , Analysis , and Evaluation
无起点-终点标识符的协调采样:算法、分析和评估
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vyas Sekar;Anupam Gupta;M. Reiter;Hui Zhang
  • 通讯作者:
    Hui Zhang
Chasing convex bodies with linear competitive ratio (invited paper)
线性竞争比追逐凸体(特邀论文)
  • DOI:
    10.1145/3406325.3465354
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Argue;Anupam Gupta;Guru Guruganesh;Ziye Tang
  • 通讯作者:
    Ziye Tang
A Nearly-Linear Bound for Chasing Nested Convex Bodies
追逐嵌套凸体的近线性界限
  • DOI:
    10.1137/1.9781611975482.8
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Argue;Sébastien Bubeck;Michael B. Cohen;Anupam Gupta;Y. Lee
  • 通讯作者:
    Y. Lee
Efficient cost-sharing mechanisms for prize-collecting problems
针对奖品收集问题的有效成本分摊机制
  • DOI:
    10.1007/s10107-014-0781-1
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Anupam Gupta;J. Könemann;S. Leonardi;R. Ravi;G. Schäfer
  • 通讯作者:
    G. Schäfer
Stochastic Steiner Trees Without a Root
无根随机斯坦纳树
  • DOI:
    10.1007/11523468_85
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Anupam Gupta;Martin Pál
  • 通讯作者:
    Martin Pál

Anupam Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anupam Gupta', 18)}}的其他基金

Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
NSF: STOC 2024 Conference Student Travel Support
NSF:STOC 2024 会议学生旅行支持
  • 批准号:
    2421504
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Towards New Relaxations for Online Algorithms
AF:小:在线算法的新放松
  • 批准号:
    2224718
  • 财政年份:
    2022
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    1955785
  • 财政年份:
    2020
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
AF: Small: New Approaches for Approximation and Online Algorithms
AF:小:近似和在线算法的新方法
  • 批准号:
    1907820
  • 财政年份:
    2019
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
CCF-BSF: AF: Small: Metric Embeddings and Partitioning for Minor-Closed Graph Families
CCF-BSF:AF:小:次封闭图族的度量嵌入和分区
  • 批准号:
    1617790
  • 财政年份:
    2016
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
BSF: 2014414: New Challenges and Perspectives in Online Algorithms
BSF:2014414:在线算法的新挑战和前景
  • 批准号:
    1540541
  • 财政年份:
    2015
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms for Uncertain Environments and Graph Partitioning
AF:小:不确定环境和图分区的近似算法
  • 批准号:
    1319811
  • 财政年份:
    2013
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
AF: Small: Future Directions in Approximation Algorithms Research
AF:小:近似算法研究的未来方向
  • 批准号:
    1016799
  • 财政年份:
    2010
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Emerging Directions in Network Design and Optimization
协作研究:网络设计和优化的新兴方向
  • 批准号:
    0729022
  • 财政年份:
    2007
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant

相似国自然基金

AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
  • 批准号:
    82370157
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
  • 批准号:
    82302029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
  • 批准号:
    82270494
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 24.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了