CHS: Small: Formal Design of Human Robot Collaboration in Safety Critical Scenarios
CHS:小型:安全关键场景中人机协作的形式化设计
基本信息
- 批准号:2007949
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human-robot collaboration technologies aim to combine the strengths from humans with those of robots. Robots excel at handling repeated routines with much higher precision and speed, and longer endurance. Humans, on the other hand, have superior perception capabilities and are much better in face of uncertainties and unexpected situations. For example, a scratch on a transparent glass can be easily detected by human eyes but presents an extremely hard challenge for computer vision. Finding principles to help design effective collaboration between humans and robots (or humans and computers in general) is core to advances in cyber-human systems. In addition, many cyber-human system applications, such as joint assembly manufacturing, driver assistance, and robot-assisted surgery are safety critical and need to achieve complex high-level tasks with guaranteed performance. This project aims to derive a provably-correct human-robot collaboration design theory that can guarantee the accomplishment of high-level complex missions. Research from this project can benefit society by increasing the safety and trustworthiness in the many real-world applications involving human-robot and human-computer collaborations such as service robots, automated manufacturing systems, emergency responses, and exploration of unknown spaces.This project adopts a new model, called vector auto-regressive partially observable Markov decision process (VAR-POMDP), to manage uncertainties, and it uses non-parametric Bayesian methods to learn the model from data. With the learned model, an automatic high-level task planning in human-robot collaboration with respect to formal specifications is studied. The team of researchers will further study how to achieve online (real-time) adaptations of the overall system when robots are interacting with different individuals or facing uncertain environments. Beyond theoretical studies, the team will develop software tools and evaluate the effectiveness of the design theory through a real robotic test-bed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人机协作技术旨在将人类的优势与机器人相结合。机器人以更高的精度和速度和更长的耐力来处理重复的例程时出色。 另一方面,人类具有出色的感知能力,面对不确定性和意外情况,人类会更好。例如,人眼可以很容易地检测到透明玻璃上的划痕,但对于计算机视觉带来了极大的挑战。寻找帮助设计人与机器人(或人类和计算机)之间有效合作的原则是网络人类系统进步的核心。此外,许多网络人类系统的应用,例如联合组装制造,驾驶员援助和机器人辅助手术至关重要,并且需要通过保证的性能来实现复杂的高级任务。该项目旨在得出可证明的人类机器人协作设计理论,该理论可以保证完成高级复杂任务。 Research from this project can benefit society by increasing the safety and trustworthiness in the many real-world applications involving human-robot and human-computer collaborations such as service robots, automated manufacturing systems, emergency responses, and exploration of unknown spaces.This project adopts a new model, called vector auto-regressive partially observable Markov decision process (VAR-POMDP), to manage uncertainties, and it uses non-parametric从数据中学习模型的贝叶斯方法。通过学习的模型,研究了针对正式规格的人类机器人协作中的自动高级任务计划。当机器人与不同的个人互动或面对不确定的环境时,研究人员将进一步研究如何实现整体系统的在线(实时)改编。除了理论研究之外,团队还将通过真正的机器人测试床开发软件工具,并评估设计理论的有效性。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hai Lin其他文献
Vortex lattice and vortex bound states in CsFe2As2 investigated by scanning tunneling microscopy/spectroscopy
通过扫描隧道显微镜/光谱研究 CsFe2As2 中的涡旋晶格和涡旋束缚态
- DOI:
10.1103/physrevb.98.024505 - 发表时间:
2018-01 - 期刊:
- 影响因子:3.7
- 作者:
Xiong Yang;Zengyi Du;Hai Lin;Delong Fang;Huan Yang;Xiyu Zhu;Hai-Hu Wen - 通讯作者:
Hai-Hu Wen
Boost Action Recognition through Computed Volume
通过计算量增强动作识别
- DOI:
10.11591/telkomnika.v11i4.2344 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
L. Wang;Ting Yun;Hai Lin - 通讯作者:
Hai Lin
Age-Efficient Concurrent Information Update Scheduling in Edge-Native Systems
边缘本机系统中高效的并发信息更新调度
- DOI:
10.1109/lwc.2022.3146908 - 发表时间:
2022 - 期刊:
- 影响因子:6.3
- 作者:
Yi-Han Chiang;Sonori Wakisaka;Chao Zhu;Hai Lin;Yusheng Ji - 通讯作者:
Yusheng Ji
Laser wakefield and self-modulation of driving pulse
激光尾场与驱动脉冲自调制
- DOI:
10.1063/1.1588639 - 发表时间:
2003 - 期刊:
- 影响因子:2.2
- 作者:
Hai Lin;Zhi‐zhan Xu;Liming Chen;J. Kieffer - 通讯作者:
J. Kieffer
Sensor fault detection and identification using Kernel PCA and its fast data reconstruction
使用内核 PCA 进行传感器故障检测和识别及其快速数据重建
- DOI:
10.1109/ccdc.2010.5498464 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Peng Hong;Wang Rui;Hai Lin - 通讯作者:
Hai Lin
Hai Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hai Lin', 18)}}的其他基金
Adaptive Multi-Layer Simulations of NarK Transport Protein
NarK 转运蛋白的自适应多层模拟
- 批准号:
2153441 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: Nano-Engineered Superwood for Resilient Foundation Systems
合作研究:用于弹性基础系统的纳米工程超级木材
- 批准号:
2120656 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Interactive and collaborative robot-assisted emergency evacuations
NRI:INT:COLLAB:交互式协作机器人辅助紧急疏散
- 批准号:
1830335 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
S&AS: INT: COLLAB: Composable and Verifiable Design for Autonomous Humanoid Robots in Space Missions
S
- 批准号:
1724070 - 财政年份:2017
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Adaptive QM/MM Methods for Proton Transfer in Complex Environments
复杂环境中质子转移的自适应 QM/MM 方法
- 批准号:
1564349 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: Dependable Multi-Robot Cooperative Tasking in Uncertain and Dynamic Environments
CPS:TTP 选项:协同:协作研究:不确定和动态环境中可靠的多机器人协作任务
- 批准号:
1446288 - 财政年份:2015
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Multi-robot cooperative tasking through local coordination design
职业:通过局部协调设计进行多机器人协作任务
- 批准号:
1253488 - 财政年份:2013
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Multiscale Simulations of Chloride Transport Proteins by Combined Quantum and Classic Mechanical Approaches
职业:通过结合量子和经典机械方法对氯离子转运蛋白进行多尺度模拟
- 批准号:
0952337 - 财政年份:2010
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
二次計画問題の狭小な半正定値緩和に基づく多項式最適化の大域的解法の展開
基于二次规划问题的窄正半定松弛的多项式优化全局求解方法的开发
- 批准号:
22KJ1307 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CISE-ANR: SHF: Small: Scenario-based Formal Proofs for Concurrent Software
CISE-ANR:SHF:小型:并发软件的基于场景的形式化证明
- 批准号:
2315363 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CPS: SMALL: Formal Methods for Safe, Efficient, and Transferable Learning-enabled Autonomy
CPS:SMALL:安全、高效和可迁移的学习自主的正式方法
- 批准号:
2231257 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
SHF: Small: Little Tricky Logics: Misconceptions in Understanding Logics and Formal Properties
SHF:小:小棘手的逻辑:理解逻辑和形式属性的误解
- 批准号:
2227863 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
SHF: Small: Toward Fully Automated Formal Software Verification
SHF:小型:迈向全自动形式软件验证
- 批准号:
2210243 - 财政年份:2022
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant