Collaborative Research: CNS Core: Small: RUI: Intelligent Developer Infrastructure
协作研究:CNS 核心:小型:RUI:智能开发者基础设施
基本信息
- 批准号:2008487
- 负责人:
- 金额:$ 20.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Software engineers use development tools to help develop software. The tools may compile computer code into runnable programs, debug programs to find and fix errors, and deploy software across systems. Existing tools used for these tasks are complex. The misuse of tools can introduce errors and inefficiencies. For example, a popular tool for compiling code, called "make", automates compilation with a user-provided encoding of the task. Users of "make" must produce either a simple but inefficient encoding, or an efficient but complex encoding with an increased risk of error. This project introduces techniques that correctly and efficiently automate compilation, debugging, and deployment tasks without programming.This project proposes a core technique built on dependency graphs. A dependency graph is generated by observing a piece of software interacting with its environment as it runs. This project proposes three tools that leverage dependency graphs to automate software development tasks. First, Riker correctly and efficiently automates compilation tasks based on a single example compilation. Second, Scotty answers high-level queries about where a program went wrong by observing the program's execution. Third, Locutus automates software deployment tasks by observing the user during an example deployment.This project has the potential to impact the day-to-day work of software developers significantly. Automating support tasks with minimal developer input reduces the cost of software development and guarantees that support tasks are correct by construction. These changes free software developers to focus on their core tasks. This project will provide undergraduate students at Grinnell College and Williams College with opportunities to participate in research, and will broaden participation by including students from underrepresented groups.All products of this project will be hosted at https://github.com/curtsinger-lab/idi-grant. Code produced in the course of this project will be released under the MIT license. Modifications to existing software will be released under a compatible open source license. Any non-code products will comprise only publicly-available, non-confidential information, and will be released under a Creative Commons license. All products of this project will be preserved for at least five years after the conclusion of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件工程师使用开发工具来帮助开发软件。这些工具可以将计算机代码编译成可运行的程序,调试程序以发现和修复错误,并跨系统部署软件。用于这些任务的现有工具非常复杂。误用工具可能会导致错误和效率低下。例如,一个流行的代码编译工具,称为“make”,使用用户提供的任务编码自动编译。“make”的用户必须要么生成简单但低效的编码,要么生成高效但复杂且错误风险增加的编码。该项目介绍了无需编程即可正确高效地自动执行编译、调试和部署任务的技术。该项目提出了一种基于依赖图的核心技术。依赖图是通过观察一段软件在运行时与其环境交互而生成的。这个项目提出了三个工具,它们利用依赖图来自动化软件开发任务。首先,Riker基于单个示例编译正确而高效地自动执行编译任务。其次,Scotty通过观察程序的执行来回答有关程序哪里出错的高级问题。第三,Locutus通过在示例部署过程中观察用户来自动执行软件部署任务。该项目有可能显著影响软件开发人员的日常工作。自动化支持任务,只需最少的开发人员投入即可降低软件开发成本,并确保支持任务按结构正确执行。这些变化使软件开发人员可以专注于他们的核心任务。该项目将为格林内尔学院和威廉姆斯学院的本科生提供参与研究的机会,并将通过纳入代表不足的群体的学生来扩大参与。该项目的所有产品将在https://github.com/curtsinger-lab/idi-grant.上托管在这个项目过程中产生的代码将在麻省理工学院的许可下发布。对现有软件的修改将在兼容的开源许可证下发布。任何非代码产品将仅包含公开可用的非机密信息,并将在知识共享许可下发布。该项目的所有产品将在项目结束后至少保存五年。该奖项反映了NSF的法定使命,并已通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Riker: Always-Correct and Fast Incremental Builds from Simple Specifications
Riker:从简单的规范开始始终正确且快速的增量构建
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Curtsinger, Charlie;Barowy, Daniel W.
- 通讯作者:Barowy, Daniel W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Barowy其他文献
Daniel Barowy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 20.99万 - 项目类别:
Continuing Grant