RI: Small: Neural Sequences as a Robust Dynamic Regime for Spatiotemporal Time Invariant Computations.

RI:小:神经序列作为时空时不变计算的鲁棒动态机制。

基本信息

  • 批准号:
    2008741
  • 负责人:
  • 金额:
    $ 49.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The temporal dimension is of fundamental importance to understanding the brain because one of the brain's primary function is temporal in nature: the brain uses information about the past (memories) to predict the future. As a result of the inherently temporal nature of brain function the brain has evolved mechanisms to tell time, encode time, and perform time-dependent computations. These computations endow animals with the ability to quickly learn to anticipate external events (for example when a red light should change), and to recognize and generate complex temporal patterns (such as those that underlie speech or Morse code). A feature of the brain's computational abilities is referred to as "temporal scaling," for example, the ability to talk, play music, or tap a Morse code message at different speeds. The neural mechanisms underlying timing and temporal scaling remain poorly understood. Furthermore, although dramatic advances have taken place in the field of machine learning, current machine learning approaches do not capture how the brain performs temporal computations or achieves temporal scaling. Emerging experimental data suggest that the brain may encode time and implement temporal scaling through a number of different dynamic regimes including ramping (increasing firing rates with time) or neural sequences (transient sequential activation of neurons). This project seeks to understand how time-dependent computations are performed in recurrent neural networks, and proposes that neural sequences provide an optimal solution to the problem of temporal scaling. This project will contribute to advances in the ability of artificial systems to capture the computational power of the brain. Associated education and outreach efforts are closely related to the research.Two main approaches will be used. First, machine-learning based supervised recurrent neural networks will be trained on a number of different timing tasks--including a Morse code task that requires producing a complex temporal pattern at different speeds--in order to determine if neural sequences represent a general solution to the problems of encoding time and temporal scaling. Second, neuronal and synaptic properties that are mostly absent from current machine learning approaches will be used to develop a model of how neural sequences emerge and undergo temporal scaling in a biologically plausible fashion. Specifically, cortical synapses exhibit short-term synaptic plasticity, in which the strength of synapses change in a use-dependent manner over the course of hundreds of milliseconds, these dynamics can in turn be modulated--accelerating or slowing short-term synaptic plasticity. It is hypothesized that this modulation of short-term synaptic plasticity is one way the brain implements temporal scaling. Overall, this project will lead to novel biological principles being applied towards machine learning, and further advance the ability to emulate the brain’s computational strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
暂时的维度对于理解大脑至关重要,因为大脑的主要功能在本质上是暂时的:大脑使用有关过去(记忆)的信息来预测未来。由于大脑功能的固有暂时性,大脑具有进化的机制来分解时间,编码时间和执行时间依赖性计算。这些计算赋予动物能够快速学会预测外部事件的能力(例如,当红灯应发生变化),并识别和生成复杂的临时模式(例如那些是基于语音或莫尔斯代码的临时模式)。大脑计算能力的一个功能称为“时间缩放”,例如,以不同速度说话,播放音乐或点击摩尔斯的代码消息的能力。定时和临时缩放的基础神经元机制仍然很少理解。此外,尽管在机器学习领域已经取得了巨大进步,但当前的机器学习方法并未捕获大脑如何执行临时计算或实现临时缩放。新兴的实验数据表明,大脑可以通过多种不同的动态状态编码时间并实施临时缩放,包括渐变(随时间提高点火速率)或神经元(神经元的短暂顺序激活)。该项目旨在了解如何在复发性神经网络中执行时间依赖性计算,并提出神经序列为临时缩放问题提供了最佳解决方案。该项目将有助于人造系统捕获大脑计算能力的能力的进步。相关的教育和外展工作与研究密切相关。将使用两种主要方法。首先,将基于机器学习的重复神经元网络对许多不同的计时任务进行培训 - 包括需要以不同速度生产复杂的临时模式的摩尔斯代码任务 - 以确定神经元序列是否代表了编码时间和临时缩放问题的一般解决方案。其次,当前机器学习方法中大多不存在的神经元和突触特性将用于开发一个模型,以了解神经元序列如何以生物学上合理的方式出现并进行临时缩放。具体而言,皮质突触暴露了短期突触可塑性,其中突触的强度在数百毫秒的过程中以使用依赖性方式变化,这些动态又可以调节 - 加速或减慢短期突触可变性。假设这种短期突触可塑性的调节是大脑实现临时缩放的一种方式。总体而言,该项目将导致新颖的生物学原理用于机器学习,并进一步促进模仿大脑的计算策略的能力。该奖项反映了NSF的法定任务,并通过评估基金会的智力优点和更广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neural population clocks: Encoding time in dynamic patterns of neural activity.
  • DOI:
    10.1037/bne0000515
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Zhou, Shanglin;Buonomano, Dean, V
  • 通讯作者:
    Buonomano, Dean, V
Creation of Neuronal Ensembles and Cell-Specific Homeostatic Plasticity through Chronic Sparse Optogenetic Stimulation
  • DOI:
    10.1523/jneurosci.1104-22.2022
  • 发表时间:
    2023-01-04
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Liu, Benjamin;Seay, Michael J.;Buonomano, Dean V.
  • 通讯作者:
    Buonomano, Dean V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dean Buonomano其他文献

Dean Buonomano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dean Buonomano', 18)}}的其他基金

RI: Small: Dynamic Attractor Computing: A Novel Computational Approach Applied Towards Temporal Pattern and Speech Recognition
RI:小型:动态吸引子计算:一种应用于时间模式和语音识别的新颖计算方法
  • 批准号:
    1420897
  • 财政年份:
    2014
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
RI: Small: Temporal and Spatiotemporal Processing in Recurrent Neural Networks with Unsupervised Learning
RI:小型:无监督学习循环神经网络中的时空处理
  • 批准号:
    1114833
  • 财政年份:
    2011
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Temporal Processing And Short- And Long-Term Plasticity
时间处理以及短期和长期可塑性
  • 批准号:
    9983122
  • 财政年份:
    2000
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
  • 批准号:
    82360454
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
MSC小细胞外囊泡转运CAMK2D上调Eno3促进坐骨神经再生的作用及机制
  • 批准号:
    82301567
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
电针治疗卒中后认知障碍新机制:下调HK2介导的海马Warburg效应调控小胶质细胞极化缓解神经炎症
  • 批准号:
    82305403
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Rab8A介导的小胶质细胞铁稳态及神经炎症调控探讨灵芝提取物改善LRRK2-G2019S突变介导的帕金森病的机制
  • 批准号:
    82305015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CB2R-β-arrestin1抑制小胶质细胞代谢重编程调控神经炎症在改善POCD中的机制研究
  • 批准号:
    82360227
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
  • 批准号:
    2312102
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
  • 批准号:
    2213335
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
RI: Small: The TAO algorithm: principled, efficient optimization of decision trees, forests, tree-based neural nets, and beyond
RI:小:TAO 算法:决策树、森林、基于树的神经网络等的原则性、高效优化
  • 批准号:
    2007147
  • 财政年份:
    2020
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
  • 批准号:
    2006747
  • 财政年份:
    2020
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
RI:Small: Neural Architecture Search with Deep Compositional Grammatical Structures
RI:Small:具有深层组合语法结构的神经架构搜索
  • 批准号:
    1909644
  • 财政年份:
    2019
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了