Investigations in Gravitational Quantum Physics
引力量子物理研究
基本信息
- 批准号:2011382
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The microscopic quantum world of subatomic particles, atoms, and small molecules can behave in a radically different way from the macroscopic classical world of everyday experience. In particular, a small molecule can bizarrely travel along two different paths 'at the same time’, while on the other hand when you throw a ball up in the air for example, it only ever follows a single path determined by how you threw it. The commonly accepted explanation is that the larger the system, the more it interacts with its environment; it is usually sufficient for a single wayward light quantum (i.e. photon) to interact with a macroscopic object to cause it to collapse onto a single path. However, we can in principle reduce the interactions with the environment, which then raises the fascinating question: how large can a macroscopic quantum object be in 'two places at once'? In this project, the PI will quantify the effects of gravity as the possible fundamental enforcer of macroscopic classicality; in contrast to the other everyday environments, gravity cannot be removed. The project will aim to provide predictions that can help guide the development of macroscopic quantum experiments, currently an active and developing area of research. The outcomes will be of direct interest to the international relativistic quantum information community, as well as to experimentalists and theorists working in quantum information science, providing for example fundamental limits on how large a quantum computer can be realized. The projects will provide training over three years for one postdoctoral fellow and one graduate student in a diverse range of theoretical physics topics. This project is jointly funded by the Quantum Information Science Program (Physics Division), and the Established Program to Stimulate Competitive Research (EPSCoR). Quantum superpositions of localized position states have to date been experimentally demonstrated for atoms with meter-scale separations, for large atomic number molecules with sub-micrometer scale separations, and for micrometer-sized vibrating structures with sub-picometer scale separations. The commonly accepted reason for not observing similar Schrödinger cat-like states in macroscopic, everyday situations is that they decohere away extremely rapidly due to interactions with air molecules, photons, defects internal to the objects etc. Such interactions with the object's environment can in principle be suppressed by cooling the suspended object in ultrahigh vacuum and inside an electromagnetic radiation shield. The one environment that cannot be shielded out, however, is gravity, i.e., gravitational wave background radiation. A number of recent efforts have set out to address the decoherence rates of macroscopic mass and energy superposition states, with a goal to provide in principle fundamental bounds on the lifetimes of macroscopic superposition states. The proposed activity comprises two projects within the area of Gravitational Quantum Physics, defined as the study of quantum dynamics in the presence of weak gravity. One project will utilize quantum field theoretic techniques involving weak gravity to quantify the upper limits on the lifetimes of mass system spatial superposition states set by gravitationally induced decoherence. The approach will consider a thought experiment, where the decoherence rate is obtained through a quantum interference measurement. The other project, while distinct from the first one, does connect to gravity through the equivalence principle. In particular, the project will consider a cloud of defect-like photodetectors undergoing oscillatory acceleration in a microwave cavity and quantify the photon detection/production from vacuum that results. Beyond a certain critical detector number, the photon production rate may undergo a phase transition, scaling as the square of the detector number and thus significantly enhancing the production rate beyond the normal scaling with detector number. The existence of this superradiant-like phase may increase the possibility of experimentally verifying photon production from vacuum for accelerating photodetectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由亚原子粒子、原子和小分子组成的微观量子世界的行为方式可以与日常经验的宏观经典世界截然不同。特别是,一个小分子可以奇怪地同时沿着两条不同的路径运动,而另一方面,当你把一个球扔到空中时,它只会沿着一条由你如何扔它的方式决定的路径运行。普遍接受的解释是,系统越大,它与环境的相互作用就越多;通常情况下,单个任性的光量子(即光子)与宏观物体相互作用就足以导致它坍塌到一条单一的路径上。然而,原则上我们可以减少与环境的相互作用,这就提出了一个令人着迷的问题:一个宏观的量子物体可以同时在两个地方有多大?在这个项目中,PI将量化重力的影响,作为宏观古典的可能基本执行者;与其他日常环境相比,重力是无法消除的。该项目旨在提供有助于指导宏观量子实验发展的预测,宏观量子实验目前是一个活跃和发展中的研究领域。这些结果将直接关系到国际相对论量子信息界,以及从事量子信息科学工作的实验者和理论家,例如,为实现多大的量子计算机提供了基本限制。这些项目将在三年内为一名博士后研究员和一名研究生提供各种理论物理主题的培训。该项目由量子信息科学计划(物理部)和已建立的激励竞争研究计划(EPSCoR)共同资助。到目前为止,局域位置态的量子叠加已经被实验证明适用于具有米级间隔的原子,具有亚微米级间隔的大原子序数分子,以及具有亚皮微米级间隔的微米级振动结构。在宏观的日常情况下没有观察到类似薛定谔猫的状态的普遍接受的原因是,由于与空气分子、光子、物体内部缺陷等的相互作用,它们极快地解码到这里。这种与物体环境的相互作用原则上可以通过在超高真空中冷却悬浮物体并在电磁辐射屏蔽内进行抑制。然而,唯一无法屏蔽的环境是重力,即引力波背景辐射。最近的一些努力已经开始解决宏观质量和能量叠加态的退相干速率,目的是在原则上提供宏观叠加态寿命的基本界限。拟议的活动包括引力量子物理领域内的两个项目,其定义是在弱引力存在的情况下研究量子动力学。其中一个项目将利用涉及弱引力的量子场论技术来量化由引力诱导的退相干设置的质量系统空间叠加态的寿命上限。该方法将考虑一个思维实验,其中消相干速率是通过量子干涉测量获得的。另一个项目虽然与第一个项目不同,但确实通过等效原理与引力联系在一起。特别是,该项目将考虑在微波腔中经历振荡加速的缺陷状光电探测器云,并量化由此产生的光子探测/真空产生。在某一临界探测器数之后,光子产生率可能会发生相变,定标为探测器数的平方,从而显著地提高光子产生率,使其超过正常的探测器数定标。这种类超辐射相的存在可能会增加从真空中实验验证用于加速光电探测器的光子产生的可能性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optomechanical Quantum Entanglement Mediated by Acoustic Phonon Fields
声声场介导的光机械量子纠缠
- DOI:10.1103/physrevlett.129.203604
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Xu, Qidong;Blencowe, M. P.
- 通讯作者:Blencowe, M. P.
Cavity mode dephasing via the optomechanical interaction with an acoustic environment
通过与声学环境的光机械相互作用进行腔模相移
- DOI:10.1103/physreva.104.063509
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Xu, Qidong;Blencowe, M. P.
- 通讯作者:Blencowe, M. P.
Coherently amplifying photon production from vacuum with a dense cloud of accelerating photodetectors
通过密集的加速光电探测器云相干地放大真空中的光子产生
- DOI:10.1038/s42005-021-00622-3
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Wang, Hui;Blencowe, Miles
- 通讯作者:Blencowe, Miles
Zero-dimensional models for gravitational and scalar QED decoherence
引力和标量 QED 退相干的零维模型
- DOI:10.1088/1367-2630/aca427
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Xu, Qidong;Blencowe, M. P.
- 通讯作者:Blencowe, M. P.
Analog black-white hole solitons in traveling wave parametric amplifiers with superconducting nonlinear asymmetric inductive elements
具有超导非线性不对称电感元件的行波参量放大器中的模拟黑白孔孤子
- DOI:10.1103/physrevresearch.5.l022055
- 发表时间:2023
- 期刊:
- 影响因子:4.2
- 作者:Katayama, Haruna;Hatakenaka, Noriyuki;Fujii, Toshiyuki;Blencowe, Miles P.
- 通讯作者:Blencowe, Miles P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miles Blencowe其他文献
Uncertain future
不确定的未来
- DOI:
10.1038/424262a - 发表时间:
2003-07-17 - 期刊:
- 影响因子:48.500
- 作者:
Miles Blencowe - 通讯作者:
Miles Blencowe
A light sounding drum
一个声音清脆的鼓
- DOI:
10.1038/471168a - 发表时间:
2011-03-09 - 期刊:
- 影响因子:48.500
- 作者:
Miles Blencowe - 通讯作者:
Miles Blencowe
Quantum RAM
量子随机存取存储器
- DOI:
10.1038/468044a - 发表时间:
2010-11-03 - 期刊:
- 影响因子:48.500
- 作者:
Miles Blencowe - 通讯作者:
Miles Blencowe
Photons paired with phonons
与声子成对的光子
- DOI:
10.1038/530284a - 发表时间:
2016-02-17 - 期刊:
- 影响因子:48.500
- 作者:
Miles Blencowe - 通讯作者:
Miles Blencowe
Photons paired with phonons
与声子成对的光子
- DOI:
10.1038/530284a - 发表时间:
2016-02-17 - 期刊:
- 影响因子:48.500
- 作者:
Miles Blencowe - 通讯作者:
Miles Blencowe
Miles Blencowe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miles Blencowe', 18)}}的其他基金
Superconducting Circuits and Macroscopic Quantum States of Light and Sound
超导电路与光和声的宏观量子态
- 批准号:
1507383 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
The Quantum-Classical Correspondence for Nonlinear Resonator Systems
非线性谐振器系统的量子经典对应
- 批准号:
1104790 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Theory of Quantum Electromechanical Systems
量子机电系统理论
- 批准号:
0804477 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigation of Quantum Noise Reduction Method using Quantum Locking with Optical Spring for Space Gravitational Wave Detector DECIGO
空间引力波探测器DECIGO光学弹簧量子锁定量子降噪方法研究
- 批准号:
23KJ1121 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
QuSeC-TAQS: Improving Geodesy and Gravitational Sensing with Quantum Sensors of Time
QuSeC-TAQS:利用量子时间传感器改进大地测量和重力感应
- 批准号:
2326808 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Linking Theory to Experiment: Using Holographic Theories of Quantum Gravity to Explain Gravitational Wave Echoes
将理论与实验联系起来:利用量子引力全息理论来解释引力波回波
- 批准号:
547745-2020 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Probing Quantum Gravitational Geons
探测量子引力几何子
- 批准号:
580489-2022 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Probing the quantum gravitational structure of spacetime via black holes and gravitational waves
通过黑洞和引力波探测时空的量子引力结构
- 批准号:
RGPIN-2021-03644 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Optical coating optimisation to enable the transfer of technologies from gravitational wave detection to quantum and intense light-matter experiments
光学涂层优化,实现从引力波探测到量子和强光物质实验的技术转移
- 批准号:
ST/W005778/1 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Beating the standard quantum limit using optical-spring quantum locking for space gravitational-wave antenna DECIGO
利用空间引力波天线 DECIGO 的光学弹簧量子锁定突破标准量子极限
- 批准号:
22H01247 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum measurement system of optical beat note for observing cosmic gravitational-wave background originating from the inflation
用于观测暴胀宇宙引力波背景的光拍音量子测量系统
- 批准号:
21K13933 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists