Quantum/Classical Boundaries in Matter-Wave Solitons

物质波孤子中的量子/经典边界

基本信息

  • 批准号:
    2011829
  • 负责人:
  • 金额:
    $ 53.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

General audience abstract: Physicists have found that quantum mechanics works perfectly to describe the micro-world of single or small numbers of electrons, protons, or atoms. Quantum correlations in these small systems, known as “quantum entanglement,” are the primary attribute driving the quest to realize quantum computation. For a quantum computer to exhibit an advantage over an ordinary classical computer, however, the number of entangled particles must be large, thus presenting obstacles, both technical and fundamental, to their implementation. NSF-funded graduate student researchers will perform experiments that explore the limits of quantum entanglement in the largest systems to date using self-stabilizing wavepackets of atoms, known as solitons. Although large for a quantum system, containing as many as 10,000 atoms, solitons confined to a one-dimensional line are bestowed with a special robustness that makes them ideal for exploring how far quantum physics may be extended into the macro-world. These experiments will help us understand the quantum/classical boundary, and how it may be extended to even larger systems. By performing these experiments, graduate students, several from underrepresented groups, learn the methods of experimental atomic physics in a state-of-the-art laboratory, gaining expertise that will follow them in their careers in academia, government, or industry. Technical audience abstract:Solitons are dispersion-less excitations that arise in nonlinear systems. They are found both in classical and quantum wave phenomena, such as waves propagating in water, plasmas, optical fibers, and in matter waves to name just a few examples. Solitons are one of the few non-trivial systems that are described by an exactly integrable model. The researchers will continue their experimental investigation of bright matter-wave solitons produced from Bose-Einstein condensates with attractive interactions, and specifically, they will explore the role of integrability in determining the quantum/classical boundary. Recent theory predicts that integrability will protect a macro/mesoscopic object from decoherence, and can lead to the observation of effects that are manifestly quantum in objects expected to be best described by mean-field theories. By harnessing integrability, the effects of quantum fluctuations and quantum entanglement may be extended to systems with a large number of degrees of freedom, and which are large in physical size. The research team has two specific goals: 1) to observe the integrability-breaking effect of quantum fluctuations on the binding of a higher-order soliton breather and 2) to study the fast and slow collision regimes of a fundamental soliton interacting with a repulsive barrier made from a light sheet, and to exploit this geometry to realize a matter-wave soliton interferometer.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
普通观众摘要:物理学家已经发现,量子力学完美地描述了由单个或少量电子、质子或原子组成的微观世界。这些小系统中的量子关联,也就是众所周知的“量子纠缠”,是推动实现量子计算的主要因素。然而,要让量子计算机显示出比普通经典计算机更大的优势,纠缠粒子的数量必须很大,这就给它们的实现带来了技术和基础上的障碍。美国国家科学基金会资助的研究生研究人员将进行实验,探索迄今为止最大系统中量子纠缠的极限,使用自稳定的原子波包,即所谓的孤子。尽管对于一个包含多达1万个原子的量子系统来说,孤子很大,但被限制在一维直线上的孤子具有一种特殊的健壮性,这使它们成为探索量子物理学可能扩展到宏观世界的理想之选。这些实验将帮助我们理解量子/经典边界,以及如何将其扩展到更大的系统。通过进行这些实验,研究生,其中一些来自代表性不足的群体,在最先进的实验室学习实验原子物理的方法,获得专业知识,这些专业知识将在他们的学术界、政府或行业的职业生涯中跟随他们。技术观众摘要:孤子是在非线性系统中产生的无色散激励。它们存在于经典和量子波现象中,例如在水、等离子体、光纤和物质波中传播的波,仅举几个例子。孤子是少数几个用精确可积模型描述的非平凡系统之一。研究人员将继续对具有吸引相互作用的玻色-爱因斯坦凝聚体产生的明亮物质波孤子进行实验研究,具体地说,他们将探索可积性在确定量子/经典边界中的作用。最近的理论预测,可积性将保护宏观/介观物体不受退相干的影响,并可能导致观察到平均场理论最好描述的物体中明显量子的效应。通过利用可积性,量子涨落和量子纠缠的影响可以扩展到具有大量自由度和物理尺寸的系统。该研究小组有两个具体目标:1)观察量子涨落对高阶孤子呼吸子束缚的可积性破坏效应;2)研究基本孤子与由光片形成的排斥势垒相互作用的快碰撞和慢碰撞机制,并利用这一几何结构实现物质波孤子干涉。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spin-charge separation in a one-dimensional Fermi gas with tunable interactions
具有可调相互作用的一维费米气体中的自旋电荷分离
  • DOI:
    10.1126/science.abn1719
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Ruwan Senaratne;Danyel Cavazos-Cavazos;Sheng Wang;Feng He;Ya-Ting Chang;Aashish Kafle;Han Pu;Xi-Wen Guan;R;all G. Hulet
  • 通讯作者:
    all G. Hulet
Quantum Simulators: Architectures and Opportunities
  • DOI:
    10.1103/prxquantum.2.017003
  • 发表时间:
    2021-02-24
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Altman, Ehud;Brown, Kenneth R.;Zwierlein, Martin
  • 通讯作者:
    Zwierlein, Martin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randall Hulet其他文献

Randall Hulet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Randall Hulet', 18)}}的其他基金

Quantum Simulation of an FFLO Superconductor
FFLO 超导体的量子模拟
  • 批准号:
    2309362
  • 财政年份:
    2023
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Quantum Gases of Bosonic and Fermionic Lithium
玻色子和费米子锂的量子气体
  • 批准号:
    1707992
  • 财政年份:
    2017
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Joint NSF-BSF Proposal: Nonlinear Dynamics with Gross-Pitaevskii Breathers
合作研究:NSF-BSF 联合提案:采用 Gross-Pitaevskii 呼吸器的非线性动力学
  • 批准号:
    1607215
  • 财政年份:
    2016
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Many-Body Physics with Ultracold Atomic Fermions and Bosons
超冷原子费米子和玻色子的多体物理
  • 批准号:
    1408309
  • 财政年份:
    2014
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Interacting Bose-Einstein Condensates: Tunneling, Localization, and Beyond Mean-Field
相互作用的玻色-爱因斯坦凝聚态:隧道效应、局域化以及超越平均场
  • 批准号:
    1102515
  • 财政年份:
    2011
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Experiments with Quantum Gases of Lithium in 1, 2, and 3 Dimensions
1、2 和 3 维锂量子气体实验
  • 批准号:
    0801457
  • 财政年份:
    2008
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Strongly Correlated Physics in an Atomic Fermi Gas
原子费米气体中的强相关物理
  • 批准号:
    0457645
  • 财政年份:
    2005
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Tunable Interactions in Quantum Gases of Lithium
锂量子气体中的可调节相互作用
  • 批准号:
    0140353
  • 财政年份:
    2002
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Experiments with Quantum Gases of Lithium
锂量子气体实验
  • 批准号:
    9732632
  • 财政年份:
    1998
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
Experimental Studies of Ultracold Atoms
超冷原子的实验研究
  • 批准号:
    9512688
  • 财政年份:
    1995
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant

相似海外基金

Foundations of Classical and Quantum Verifiable Computing
经典和量子可验证计算的基础
  • 批准号:
    MR/X023583/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Fellowship
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
  • 批准号:
    2347622
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
  • 批准号:
    MR/Y003845/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Fellowship
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
  • 批准号:
    2339682
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Continuing Grant
A Polytopal View of Classical Polynomials
经典多项式的多面观
  • 批准号:
    2348676
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
The Cultural Legacies of the British Empire: Classical Music's Colonial History (1750-1900)
大英帝国的文化遗产:古典音乐的殖民历史(1750-1900)
  • 批准号:
    MR/X03559X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Fellowship
FET: SHF: Small: A Verification Framework for Hybrid Classical and Quantum Protocols (VeriHCQ)
FET:SHF:小型:混合经典和量子协议的验证框架 (VeriHCQ)
  • 批准号:
    2330974
  • 财政年份:
    2024
  • 资助金额:
    $ 53.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了