RUI: Building a Robust Software Infrastructure for Parameterizing and Measuring the Neutron Star Equation of State

RUI:构建强大的软件基础设施来参数化和测量中子星状态方程

基本信息

  • 批准号:
    2011874
  • 负责人:
  • 金额:
    $ 15.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This award supports research in relativity and relativistic astrophysics and it addresses the priority areas of NSF's "Windows on the Universe" Big Idea. Two years ago, the historic detection of colliding neutron stars sent physical and figurative waves through the scientific community. Shortly after, the LIGO-Virgo Collaboration made the first direct measurement of the neutron star equation of state from gravitational waves. Many more binary neutron star mergers will be seen as ground-based interferometers continue operating and increasing in sensitivity. This promises to provide even tighter constraints on the equation of state. A critical component of this process will be developing the software infrastructure for modeling and measuring the neutron star equation of state. The Kenyon College LIGO group will develop and incorporate a full suite of equation of state models available not only to the collaboration, but also available to the broader scientific community who rely on these results for followup analyses. This award intimately involves undergraduates in LIGO research and supports a no-barrier-to-entry astronomy research program that can recruit and bridge students into important LIGO research.This award focusses on four types of equation of state models that will be used for parameter estimation: 1) piecewise polytopic models, 2) spectral decompositions of the adiabatic index, 3) models with built-in sharp, first-order phase transitions, and 4) models with nuclear physics parameters. Polytropic and spectral decomposition models have already been incorporated into lalsuite, which is LIGO’s algorithm library. However, they still require important development to make them more robust, which are great projects for training young undergraduates for more substantial research. Models with phase transitions and nuclear physics parameters have not yet been incorporated into lalsuite and will require a lot of development to get working seamlessly with the collaboration’s flagship parameter estimation software. Both sets of projects, though varying in required development, are essential additions for interpreting the physics of neutron star interiors. These projects could potentially lead to conclusive evidence of a first-order phase transition in the neutron star equation of state.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持相对论和相对论天体物理学的研究,并解决了NSF“宇宙之窗”大理念的优先领域。两年前,对碰撞中子星的历史性探测在科学界掀起了物理和象征性的浪潮。不久之后,LIGO-Virgo协作组首次从引力波中直接测量了中子星星的状态方程。随着地面干涉仪的继续运行和灵敏度的提高,将看到更多的中子星星合并。这将对状态方程提供更严格的约束。这一过程的一个关键组成部分将是开发用于建模和测量中子星星状态方程的软件基础设施。 凯尼恩学院LIGO小组将开发并整合一整套状态方程模型,不仅可用于合作,还可用于更广泛的科学界,他们依赖这些结果进行后续分析。该奖项密切涉及LIGO研究的本科生,并支持无障碍进入天文学研究计划,该计划可以招募学生并将其连接到重要的LIGO研究中。该奖项侧重于四种类型的状态方程模型,这些模型将用于参数估计:1)分段多面体模型,2)绝热指数的谱分解,3)具有内置尖锐的一阶相变的模型,(4)核物理参数模型。多变和光谱分解模型已经被纳入lalsuite,这是LIGO的算法库。然而,它们仍然需要重要的发展,使它们更加强大,这是培养年轻本科生进行更实质性研究的伟大项目。相变和核物理参数模型还没有被整合到lalsuite中,需要大量的开发才能与合作的旗舰参数估计软件无缝地工作。这两套项目,虽然在所需的发展不同,是必要的补充解释中子星星内部的物理。 这些项目可能会导致在中子星星状态方程的一级相变的确凿证据。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leslie Wade其他文献

Gravitational waves: search results, data analysis and parameter estimation
  • DOI:
    10.1007/s10714-014-1796-x
  • 发表时间:
    2015-01-22
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Pia Astone;Alan Weinstein;Michalis Agathos;Michał Bejger;Nelson Christensen;Thomas Dent;Philip Graff;Sergey Klimenko;Giulio Mazzolo;Atsushi Nishizawa;Florent Robinet;Patricia Schmidt;Rory Smith;John Veitch;Madeline Wade;Sofiane Aoudia;Sukanta Bose;Juan Calderon Bustillo;Priscilla Canizares;Colin Capano;James Clark;Alberto Colla;Elena Cuoco;Carlos Da Silva Costa;Tito Dal Canton;Edgar Evangelista;Evan Goetz;Anuradha Gupta;Mark Hannam;David Keitel;Benjamin Lackey;Joshua Logue;Satyanarayan Mohapatra;Francesco Piergiovanni;Stephen Privitera;Reinhard Prix;Michael Pürrer;Virginia Re;Roberto Serafinelli;Leslie Wade;Linqing Wen;Karl Wette;John Whelan;C. Palomba;G. Prodi
  • 通讯作者:
    G. Prodi

Leslie Wade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leslie Wade', 18)}}的其他基金

RUI: Supporting LIGO Calibration, Detector Characterization, and Data Analysis in O4
RUI:支持 O4 中的 LIGO 校准、探测器表征和数据分析
  • 批准号:
    2308796
  • 财政年份:
    2023
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
  • 批准号:
    31771933
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Building Robust and Optimized Cloud-Native Mobile Networks
构建稳健且优化的云原生移动网络
  • 批准号:
    RGPIN-2022-04745
  • 财政年份:
    2022
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
Building a precise, tuneable and robust synthetic oscillator
构建精确、可调谐且稳健的合成振荡器
  • 批准号:
    547854-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Building a framework for robust biosignature identification on rocky exoplanets
建立一个在岩石系外行星上进行稳健生物特征识别的框架
  • 批准号:
    DGECR-2022-00129
  • 财政年份:
    2022
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Launch Supplement
Building a framework for robust biosignature identification on rocky exoplanets
建立一个在岩石系外行星上进行稳健生物特征识别的框架
  • 批准号:
    RGPIN-2022-04588
  • 财政年份:
    2022
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Discovery Grants Program - Individual
Building a precise, tuneable and robust synthetic oscillator
构建精确、可调谐且稳健的合成振荡器
  • 批准号:
    547854-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Building a precise, tuneable and robust synthetic oscillator
构建精确、可调谐且稳健的合成振荡器
  • 批准号:
    547854-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Building robust methods for model explainability for healthcare
构建稳健的医疗保健模型可解释性方法
  • 批准号:
    2420816
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Studentship
Building Robust and Transferable Machine Learning Systems through Continual Learning
通过持续学习构建强大且可迁移的机器学习系统
  • 批准号:
    552812-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Building robust methods for model explainability for healthcare
构建稳健的医疗保健模型可解释性方法
  • 批准号:
    2635642
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Studentship
Networks for CS Teacher Development: Building Robust Location Based Models of Teacher Learning and Community
计算机科学教师发展网络:构建强大的基于位置的教师学习和社区模型
  • 批准号:
    1935302
  • 财政年份:
    2020
  • 资助金额:
    $ 15.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了