RUI: Robust Exceptional Points and their Application in Harmonic Generation

RUI:鲁棒异常点及其在谐波产生中的应用

基本信息

  • 批准号:
    2012172
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Every year many electronics and optical devices are sent back to the factories for possible repair or replacement due to the malfunctioning behavior originating from unavoidable fabrication errors or possible damages that occurred later. This would create additional costs, a large waste of materials and energy, and thus it would be extremely important to find a solution to this problem. This project will provide new scientific insight and a novel approach for designing optical devices that are immune to the possible fabrication errors or small damages in the devices that can occur under severe conditions. The main focus of this project will be on developing new designs for robust higher frequency generation which has applications in lasers. Students from a minority-serving institution will be involved directly in this project. They will learn about the mathematical modeling of optical structures and designing different geometries for photonics applications. Therefore they become prepared to enter the future workforce in industrial or academic communities in these or related fields.Exceptional points are a class of spectral singularities with a known application in sensing. However, their sensitivity to parameter space makes them difficult to fabricate. The focus of this project is on developing a new class of exceptional points in non-Hermitian photonic systems that have topological robustness. The group will design and implement robust exceptional points in two distinct systems: i) stationary optical systems and ii) spatiotemporally modulated lattices. In stationary optical systems, they will design one-dimensional optical lattices with robust exceptional points with application in robust sensing while in spatiotemporally modulated lattices they propose a new application of exceptional points in robust optical devices capable of generating higher harmonics in the presence of disorder. The ultimate goal of this project will be the understanding of the fundamental physics behind non-reciprocity, non-Hermiticity, and topology in one framework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每年都有许多电子和光学设备被送回工厂进行可能的维修或更换,这是由于不可避免的制造错误或随后发生的可能损坏造成的故障行为。这将产生额外的成本,材料和能源的大量浪费,因此找到解决这个问题的方法是极其重要的。该项目将为设计光学器件提供新的科学见解和新的方法,这些光学器件不受在恶劣条件下可能发生的制造错误或器件中的小损坏的影响。该项目的主要重点将是开发新的设计,用于激光器中的鲁棒高频产生。来自少数群体服务机构的学生将直接参与这一项目。他们将学习光学结构的数学建模和为光子学应用设计不同的几何形状。因此,他们成为准备进入未来的劳动力在工业或学术界在这些或相关领域。例外点是一类光谱奇点与已知的应用在传感。然而,它们对参数空间的敏感性使得它们难以制造。这个项目的重点是开发一类新的特殊点的非厄米光子系统,具有拓扑鲁棒性。 该小组将在两个不同的系统中设计和实现鲁棒的例外点:i)静止光学系统和ii)时空调制晶格。在固定光学系统中,他们将设计具有鲁棒例外点的一维光学晶格,并将其应用于鲁棒传感,而在时空调制晶格中,他们提出了例外点在鲁棒光学设备中的新应用,该设备能够在存在无序的情况下产生更高的谐波。该项目的最终目标是在一个框架中理解非互易性、非厄米性和拓扑结构背后的基本物理学。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable Non-Hermitian Acoustic Filter
可调谐非厄米声学滤波器
  • DOI:
    10.1103/physrevapplied.16.014012
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Puri, S.;Ferdous, J.;Shakeri, A.;Basiri, A.;Dubois, M.;Ramezani, H.
  • 通讯作者:
    Ramezani, H.
Stabilization of zero-energy skin modes in finite non-Hermitian lattices
  • DOI:
    10.1103/physreva.106.063501
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. Yuce;H. Ramezani
  • 通讯作者:
    C. Yuce;H. Ramezani
Exceptional point based lattice gyroscopes
卓越的基于点的晶格陀螺仪
  • DOI:
    10.1364/ome.483155
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Izadparast, Masoumeh;Naik, Gururaj V.;Everitt, Henry O.;Ramezani, Hamidreza
  • 通讯作者:
    Ramezani, Hamidreza
Coexistence of extended and localized states in the one-dimensional non-Hermitian Anderson model
  • DOI:
    10.1103/physrevb.106.024202
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    C. Yuce;H. Ramézani
  • 通讯作者:
    C. Yuce;H. Ramézani
Robust localized zero-energy modes from locally embedded PT -symmetric defects
  • DOI:
    10.1103/physrevresearch.2.032057
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    F. Mostafavi;C. Yuce;O. Magaña-Loaiza;H. Schomerus;H. Ramézani
  • 通讯作者:
    F. Mostafavi;C. Yuce;O. Magaña-Loaiza;H. Schomerus;H. Ramézani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Hanke其他文献

Probing mechanical and thermodynamic properties of <em>Vibrio cholerae</em> ToxT binding to DNA by molecular dynamics simulations
  • DOI:
    10.1016/j.bpj.2021.11.384
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Andreas Hanke;Shams Mehdi;Rim Touhami;Ahmed Touhami
  • 通讯作者:
    Ahmed Touhami
Probing Mechanical and Thermodynamic Properties of <em>Vibrio cholerae</em> ToxT Binding to DNA by Molecular Dynamics Simulations
  • DOI:
    10.1016/j.bpj.2020.11.1235
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Mehdi Shams;Andreas Hanke;Rim Touhami;Ahmed Touhami
  • 通讯作者:
    Ahmed Touhami
Probing the strong boundary shape dependence of the Casimir force.
探讨卡西米尔力的强边界形状依赖性。
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    T. Emig;Andreas Hanke;R. Golestanian;M. Kardar
  • 通讯作者:
    M. Kardar
Kinetics of topological transitions in DNA mediated by topoisomerases and recombinases
  • DOI:
    10.1016/j.bpj.2021.11.546
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Andreas Hanke;Ryan P. Compton;Riccardo Ziraldo;Stephen D. Levene
  • 通讯作者:
    Stephen D. Levene

Andreas Hanke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
  • 批准号:
    70601028
  • 批准年份:
    2006
  • 资助金额:
    7.0 万元
  • 项目类别:
    青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
  • 批准号:
    60085001
  • 批准年份:
    2000
  • 资助金额:
    14.0 万元
  • 项目类别:
    专项基金项目
ROBUST语音识别方法的研究
  • 批准号:
    69075008
  • 批准年份:
    1990
  • 资助金额:
    3.5 万元
  • 项目类别:
    面上项目
改进型ROBUST序贯检测技术
  • 批准号:
    68671030
  • 批准年份:
    1986
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Fellowship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
  • 批准号:
    24K20794
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
  • 批准号:
    2339746
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了