Bounds and Asymptotic Dynamics for Nonlinear Evolution Equations

非线性演化方程的界和渐近动力学

基本信息

  • 批准号:
    2012333
  • 负责人:
  • 金额:
    $ 7.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Many physical, engineering, and biological phenomena are described by mathematical models with a large number of strongly-interacting particles. The range of these phenomena includes such diverse examples as complex and compressible fluids (combustion, aerospace engineering, and meteorology), nonlocal reaction-diffusion processes (nuclear physics, population biology, and genetics), and kinetic theory (plasma physics, swarm dynamics, and astrophysics). This project focuses on novel approaches to determining two fundamental characteristics of solutions to equations modeling large numbers of strongly interacting particles: their regularity and asymptotic behavior. The regularity of such problems establishes that the models are well-behaved, which often means the equations remain numerically tractable in computer simulations. The asymptotic theory seeks to find simplified limiting behavior for equations, in which many complex interactions average out and have a residual effect that governs the behavior of the system. Information about the limiting behavior is instrumental for applications such as medical imaging or materials science. For many important phenomena that demonstrate complex, nonlinear behavior, the application of known methods for analysis and control is greatly limited and not always possible. The aim of this project is to investigate three new techniques that partly overcome the difficulties caused by nonlinearity. The project will also provide training and research opportunities for both graduate and undergraduate students. The principal investigator will use techniques of nonlinear analysis, viscosity theory, and probability to establish bounds and asymptotic dynamics for the three major parts of the project. The first part focuses on exploring thermally enhanced dissipation for hydrodynamic equations where the viscosity grows with local temperature. From kinetic considerations and empirical observations, the kinematic viscosity of a compressible fluid flow increases with the local temperature and the local temperature is produced by friction. The intuition is that, in such models, regions of high turbulence self-regularize by producing hot spots which boost the viscosity exactly where it is needed to prevent the development of singularities. Prior work has identified this effect in two model problems (along with corresponding bounds). One of the main goals of the project is to push these types of estimates to physical models of compressible thermal fluids such as the Navier-Stokes-Fourier system, the equations of magneto-hydrodynamics, and the Poisson-Nernst-Planck-Fourier system for electrokinetic complex fluids. Enhanced thermal dissipation is a truly novel source of regularization compared to other known energy-based methods and lends itself naturally to dynamic weighted Sobolev estimates and entropy methods. The second part focuses on developing methods to extract asymptotic behavior from strongly nonlocal heterogeneous reaction-diffusion equations. There is a growing interest in extracting simpler macroscopic dynamics (often taking the form of geometric equations) from certain scaling limits of more complicated models. The nonlocal operators in these models present unique challenges in determining their residual impact on the (sometimes discontinuous) homogenized equation. The investigator plans to implement the techniques of viscosity theory to pursue homogenization phenomena for nonlocal periodic Fisher-KPP and bistable (Allen-Cahn) equations. The third part focuses on the regularity theory for kinetic equations (i.e., Landau and Boltzmann). Most regularity results for these equations rely on the assumption of having the lower bound on the density (as this often yields a minimum dissipation in the velocity variables). The investigator will explore the emergence of such lower bounds through probabilistic techniques, writing the kinetic equation as an approximate Fokker-Planck equation for a certain stochastic process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理、工程和生物现象都是用含有大量强相互作用粒子的数学模型来描述的。这些现象的范围包括各种不同的例子,如复杂的和可压缩的流体(燃烧、航空航天工程和气象学)、非局部反应扩散过程(核物理、种群生物学和遗传学)和动力学理论(等离子体物理、群体动力学和天体物理)。这个项目专注于确定建模大量强相互作用粒子的方程的解的两个基本特征的新方法:它们的正则性和渐近行为。这类问题的规律性确定了模型的良好行为,这通常意味着在计算机模拟中,方程仍然是数值可处理的。渐近理论试图找到方程的简化极限行为,其中许多复杂的相互作用取平均值,并具有支配系统行为的残差效应。有关限制行为的信息对医学成像或材料科学等应用是有用的。对于许多表现出复杂的、非线性行为的重要现象,已知的分析和控制方法的应用是非常有限的,而且并不总是可能的。这个项目的目的是研究三种新技术,它们可以部分克服非线性带来的困难。该项目还将为研究生和本科生提供培训和研究机会。主要研究人员将使用非线性分析、粘性理论和概率论等技术,为项目的三个主要部分建立边界和渐近动力学。第一部分主要研究粘性随局部温度增长的流体力学方程的热耗散问题。从动力学考虑和经验观测来看,可压缩流体流动的运动粘度随着局部温度的升高而增加,局部温度是由摩擦产生的。直觉是,在这样的模型中,高湍流区域通过产生热点来自我调节,这些热点恰好在防止奇点发展所需的地方增加了粘度。先前的工作已经在两个模型问题中发现了这种影响(以及相应的界限)。该项目的主要目标之一是将这些类型的估计推广到可压缩热流体的物理模型,例如用于电动复杂流体的Navier-Stokes-Fourier系统、磁流体动力学方程和Poisson-Nernst-Planck-Fourier系统。与其他已知的基于能量的方法相比,增强的热耗散是一种真正新颖的正则化来源,并且自然地适合于动态加权Soblev估计和熵方法。第二部分主要研究从强非局部非均匀反应扩散方程中提取渐近行为的方法。人们越来越有兴趣从更复杂模型的某些比例限制中提取更简单的宏观动力学(通常采取几何方程的形式)。这些模型中的非局部算子在确定它们对齐次化方程(有时是不连续的)的残余影响方面提出了独特的挑战。研究人员计划应用粘性理论的技术来研究非局部周期Fisher-KPP方程和双稳态(Allen-Cahn)方程的齐化现象。第三部分重点介绍了动力学方程(即朗道和玻尔兹曼)的正则性理论。这些方程的大多数正则性结果依赖于密度下限的假设(因为这通常会在速度变量中产生最小的耗散)。研究人员将通过概率技术探索这种下限的出现,将动力学方程写成某个随机过程的近似福克-普朗克方程。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Front propagation for integro-differential KPP reaction–diffusion equations in periodic media
Self-generating lower bounds and continuation for the Boltzmann equation
Local solutions of the Landau equation with rough, slowly decaying initial data
具有粗糙、缓慢衰减初始数据的朗道方程的局部解
  • DOI:
    10.1016/j.anihpc.2020.04.004
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henderson, Christopher;Snelson, Stanley;Tarfulea, Andrei
  • 通讯作者:
    Tarfulea, Andrei
Positivity of temperature for some non-isothermal fluid models
某些非等温流体模型的温度正值
  • DOI:
    10.1016/j.jde.2022.08.025
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lai, Ning-An;Liu, Chun;Tarfulea, Andrei
  • 通讯作者:
    Tarfulea, Andrei
Local well-posedness of the Boltzmann equation with polynomially decaying initial data
  • DOI:
    10.3934/krm.2020029
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
  • 通讯作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Tarfulea其他文献

Alternating traps in Muller and parity games
  • DOI:
    10.1016/j.tcs.2013.11.032
  • 发表时间:
    2014-02-13
  • 期刊:
  • 影响因子:
  • 作者:
    Andrey Grinshpun;Pakawat Phalitnonkiat;Sasha Rubin;Andrei Tarfulea
  • 通讯作者:
    Andrei Tarfulea
Decay estimates and continuation for the non-cutoff Boltzmann equation
  • DOI:
    10.1007/s00208-025-03207-5
  • 发表时间:
    2025-06-17
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Christopher Henderson;Stanley Snelson;Andrei Tarfulea
  • 通讯作者:
    Andrei Tarfulea
Gradient estimates and symmetrization for Fisher-KPP front propagation with fractional diffusion
具有分数扩散的 Fisher-KPP 前向传播的梯度估计和对称化
  • DOI:
    10.1016/j.matpur.2017.07.001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Roquejoffre;Andrei Tarfulea
  • 通讯作者:
    Andrei Tarfulea
The global existence of strong solutions for a non-isothermal ideal gas system
全球范围内存在非等温理想气体系统的强解
  • DOI:
    10.1007/s10473-024-0306-9
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Bin Han;Ning;Andrei Tarfulea
  • 通讯作者:
    Andrei Tarfulea
Improved a priori bounds for thermal fluid equations
改进热流体方程的先验界限

Andrei Tarfulea的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Tarfulea', 18)}}的其他基金

Diffusive Regularization in Kinetic and Fluid Equations
动力学和流体方程的扩散正则化
  • 批准号:
    2108209
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Bounds and Asymptotic Dynamics for Nonlinear Evolution Equations
非线性演化方程的界和渐近动力学
  • 批准号:
    1816643
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant

相似海外基金

Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
  • 批准号:
    2246704
  • 财政年份:
    2023
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
  • 批准号:
    2205493
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Asymptotic and transient dynamics in predator-prey systems with spatial and temporal heterogeneity
具有时空异质性的捕食者-被捕食系统的渐近和瞬态动力学
  • 批准号:
    RGPIN-2020-06825
  • 财政年份:
    2022
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and transient dynamics in predator-prey systems with spatial and temporal heterogeneity
具有时空异质性的捕食者-被捕食系统的渐近和瞬态动力学
  • 批准号:
    RGPIN-2020-06825
  • 财政年份:
    2021
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic Dynamics of Nonlinear Wave and Dispersive Equations
非线性波和色散方程的渐近动力学
  • 批准号:
    1954707
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Standard Grant
Asymptotic and transient dynamics in predator-prey systems with spatial and temporal heterogeneity
具有时空异质性的捕食者-被捕食系统的渐近和瞬态动力学
  • 批准号:
    RGPIN-2020-06825
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and transient dynamics in predator-prey systems with spatial and temporal heterogeneity
具有时空异质性的捕食者-被捕食系统的渐近和瞬态动力学
  • 批准号:
    DGECR-2020-00369
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Unraveling the Multiscale Asymptotic Dynamics of Planetary Dynamos
职业生涯:揭示行星发电机的多尺度渐近动力学
  • 批准号:
    1945270
  • 财政年份:
    2020
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
Asymptotic theory based on molecular dynamics of vapor-liquid system
基于汽液系统分子动力学的渐近理论
  • 批准号:
    18K18824
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Asymptotic Problems in Random Dynamics
随机动力学中的渐近问题
  • 批准号:
    1811444
  • 财政年份:
    2018
  • 资助金额:
    $ 7.3万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了