Physics-Reinforced Deep Learning for Structural Metamodeling

用于结构元建模的物理强化深度学习

基本信息

  • 批准号:
    2013067
  • 负责人:
  • 金额:
    $ 59.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This research will develop new computational methods to advance modeling, analysis and assessment of civil structural systems subjected to earthquakes. Currently available simplified or reduced-order models widely used in structural analysis have severe limitations in accurately predicting the complex nonlinearities in structural response under earthquake loading (e.g., in the presence of large nonlinear drifts, damage, failure, etc.). The infusion of artificial intelligence (AI) into civil engineering offers a powerful new approach for structural modeling. However, currently large amounts of data are required to train a reliable AI model, and even with rich data, the trained models are difficult to interpret and have little physical meaning. To address these fundamental issues and to bridge the knowledge gap between AI and performance-based engineering, this project will integrate deep learning and physics principles for efficient and probabilistic modeling of nonlinear structures under earthquake hazards. This research will advance more efficient design, reliability analysis, control and optimization of engineering structures with much less computational efforts. The project will also establish an integrated research-education-outreach program that will (i) transform the fundamental understanding of machine learning grounded with domain-specific knowledge, (ii) promote participation by undergraduates, in particular, women and minorities, and (iii) inspire high school students to pursue STEM-related careers.This research will breathe novel elements of machine learning into performance-based structural engineering, opening a new avenue by leveraging deep learning integrated with physics knowledge for modeling of seismic response of structural systems. The specific research aims of this project include: (1) developing unsupervised learning-based ground motion selection for optimal generation of seismic response database, (2) establishing rigorous formulation and algorithm for an innovative, physics-reinforced deep Learning paradigm for structural metamodeling, (3) developing a neural network compression approach to prune the metamodels for efficient inference, and (4) incorporating variability for probabilistic seismic response prediction and fragility analysis. The resulting deep-learning-based metamodels will possess salient features including (i) interpretability with physical meaning, (ii) generalizability and extrapolation to unseen cases, (iii) real-time inference based on a lightweight/compressed metamodel architecture, and (iv) capability of addressing incomplete and scare data. This approach will be applicable to a wide range of nonlinear dynamical systems under complex loading conditions. This project will advance the knowledge base in multiple disciplines of nonlinear structural dynamics, computational modeling, robust and efficient machine/deep learning, optimization and uncertainty quantification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将开发新的计算方法,以推进建模,分析和评估土木结构系统受到地震。目前广泛用于结构分析的简化或降阶模型在准确预测地震荷载下结构响应的复杂非线性方面存在严重的局限性(例如,在存在大的非线性漂移、损坏、故障等的情况下)。将人工智能(AI)注入土木工程为结构建模提供了一种强大的新方法。然而,目前需要大量的数据来训练可靠的AI模型,即使有丰富的数据,训练的模型也很难解释,并且几乎没有物理意义。为了解决这些基本问题,并弥合人工智能和基于性能的工程之间的知识差距,该项目将整合深度学习和物理原理,对地震灾害下的非线性结构进行高效和概率建模。该研究将以更少的计算工作量促进工程结构的更有效的设计、可靠性分析、控制和优化。该项目还将建立一个综合的研究-教育-推广计划,(i)以特定领域的知识为基础,转变对机器学习的基本理解,(ii)促进本科生,特别是女性和少数民族的参与,(iii)激励高中生追求STEM相关的职业。这项研究将为基于性能的结构工程注入机器学习的新元素,通过利用深度学习与物理知识相结合,为结构系统的地震响应建模开辟了一条新途径。该项目的具体研究目标包括:(1)开发基于无监督学习的地面运动选择,以优化地震响应数据库的生成,(2)为结构元建模的创新的、物理增强的深度学习范例建立严格的公式和算法,(3)开发神经网络压缩方法来修剪元模型以进行有效的推理,(4)考虑变异性进行概率地震反应预测和易损性分析。由此产生的基于深度学习的元模型将具有显著的特征,包括(i)具有物理意义的可解释性,(ii)对未知情况的可推广性和外推性,(iii)基于轻量级/压缩元模型架构的实时推理,以及(iv)解决不完整和稀缺数据的能力。这种方法将适用于各种复杂载荷条件下的非线性动力系统。该项目将推进非线性结构动力学、计算建模、稳健高效的机器/深度学习、优化和不确定性量化等多个学科的知识基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Physics-Informed Multi-LSTM Networks for Metamodeling of Nonlinear Structures
  • DOI:
    10.1016/j.cma.2020.113226
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruiyang Zhang;Yang Liu;Hao Sun-
  • 通讯作者:
    Ruiyang Zhang;Yang Liu;Hao Sun-
Forecasting of nonlinear dynamics based on symbolic invariance
基于符号不变性的非线性动力学预测
  • DOI:
    10.1016/j.cpc.2022.108382
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    Chen, Zhao;Liu, Yang;Sun, Hao
  • 通讯作者:
    Sun, Hao
Physics-guided convolutional neural network (PhyCNN) for data-driven seismic response modeling
  • DOI:
    10.1016/j.engstruct.2020.110704
  • 发表时间:
    2020-07-15
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zhang, Ruiyang;Liu, Yang;Sun, Hao
  • 通讯作者:
    Sun, Hao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerome Hajjar其他文献

Multi-dimensional Earthquake Response of Se-lfcentering Building Structural System Using Upliftresilient steel braced fersamwithMechanism
举升式弹性钢支撑框架自定心建筑结构体系的多维地震响应
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Azuhata,T.,Ishihara,T. and Midorikawa,Eatherton;Jerome Hajjar;Toru Takeuchi ;Kazuhiko Kasai and Mitsumasa Midorikawa;EarthquakeM
  • 通讯作者:
    EarthquakeM

Jerome Hajjar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jerome Hajjar', 18)}}的其他基金

Collaborative Research: Transforming Building Structural Resilience through Innovation in Steel Diaphragms
合作研究:通过钢隔膜创新改变建筑结构的弹性
  • 批准号:
    1562490
  • 财政年份:
    2016
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
NRI: Large: Collaborative Research: Fast and Accurate Infrastructure Modeling and Inspection with Low-Flying Robots
NRI:大型:协作研究:使用低空飞行机器人进行快速准确的基础设施建模和检查
  • 批准号:
    1328816
  • 财政年份:
    2013
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Deconstructable Systems for Sustainable Design of Steel and Composite Structures
用于钢结构和复合结构可持续设计的可解构系统
  • 批准号:
    1200820
  • 财政年份:
    2012
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Collaborative Research: Reconfiguring Steel Structures: Energy Dissipation and Buckling Mitigation Through the Use of Steel Foams
合作研究:重构钢结构:通过使用泡沫钢进行能量耗散和屈曲缓解
  • 批准号:
    0970059
  • 财政年份:
    2010
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Performance Assessment and Performance-Based Design Metholodogy for Composite Construction with Application to Concrete-Filled Steel Tube Structural Systems
复合结构性能评估和基于性能的设计方法在钢管混凝土结构系统中的应用
  • 批准号:
    0084848
  • 财政年份:
    2000
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Continuing Grant
Conference: Composite Construction in Steel and Concrete IV
会议:钢与混凝土复合结构 IV
  • 批准号:
    9900355
  • 财政年份:
    1999
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Composite Interaction of Steel Frame Members and Reinforced Concrete Walls Under Seismic Loading
地震荷载下钢框架构件与钢筋混凝土墙的复合相互作用
  • 批准号:
    9810005
  • 财政年份:
    1998
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
RIA: Three-Dimensional Nonlinear Cyclic Analysis of Concrete-Filled Tube Beam-Columns and Composite Subassemblies
RIA:混凝土管梁柱和组合组件的三维非线性循环分析
  • 批准号:
    9410473
  • 财政年份:
    1994
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
  • 批准号:
    2340090
  • 财政年份:
    2024
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Sustainable Design of Basalt Fibre Reinforced Polymer Reinforced Concrete Structures
玄武岩纤维增强聚合物混凝土结构的可持续设计
  • 批准号:
    10075467
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Grant for R&D
Study for mechanical properties of carbon fiber-reinforced composite materials with phase-separated structures
相分离结构碳纤维增强复合材料力学性能研究
  • 批准号:
    23H01291
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Textile Reinforced Concretes for structural or repair application
用于结构或维修应用的纺织钢筋混凝土
  • 批准号:
    2885406
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Studentship
I-Corps:Automated manufacturing of fiber-reinforced polymer composites
I-Corps:纤维增强聚合物复合材料的自动化制造
  • 批准号:
    2345499
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
Investigation of torsional performance characteristics of unreinforced masonry infill walls in reinforced concrete frames
钢筋混凝土框架内无筋砌体填充墙扭转性能特性研究
  • 批准号:
    23K13440
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Clarification of Size Effect on Shear Behavior of Steel Fiber Reinforced Concrete Members by Using High-resolution Measurement System
利用高分辨率测量系统阐明尺寸对钢纤维混凝土构件剪切性能的影响
  • 批准号:
    23K04119
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of the Multiscale and Multi-electro-chemo-mechanical Lifecycle Evaluation Method of Impressed Current Cathodic Protection Applied to Reinforced Concrete Structures
钢筋混凝土结构外加电流阴极保护多尺度、多电化学-机械生命​​周期评价方法的发展
  • 批准号:
    23K19134
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Electrodeposition joining of metals and carbon fiber-reinforced plastics
金属和碳纤维增强塑料的电沉积连接
  • 批准号:
    23H01727
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
I-Corps: Development of Self-healing, Fiber-reinforced Composites
I-Corps:开发自修复纤维增强复合材料
  • 批准号:
    2330696
  • 财政年份:
    2023
  • 资助金额:
    $ 59.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了