Developing a Next Generation Concept Inventory to Help Environmental Programs Evaluate Student Knowledge of Complex Food-Energy-Water Systems
开发下一代概念清单,以帮助环境项目评估学生对复杂食物-能源-水系统的了解
基本信息
- 批准号:2013359
- 负责人:
- 金额:$ 14.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by improving teaching practices in undergraduate environmental programs. To do so, the project will develop and test a written response concept inventory to measure undergraduate students’ knowledge of complex Food-Energy-Water systems. Traditional concept inventories are widely used in many disciplines to measure student understanding of key ideas in the discipline. These concept inventories use answers to multiple choice questions to measure student knowledge. However, greater insight into student thinking can be gained from questions that require students to use their own words to demonstrate their knowledge. This project plans to develop a “Next Generation Concept Inventory” that will use short answer questions and automated scoring of student responses to questions about interdisciplinary, systems-level concepts. The availability of this concept inventory is expected to help faculty evaluate their students’ understanding of complex environmental concepts, as well as evaluate and compare learning within and between programs. This information, in turn, can be used to improve teaching effectiveness within environmental programs and may serve as a model for similar approaches in other disciplines.To better inform those who teach, make curricular decisions, and manage college-level environmental programs, the project will develop an assessment tool to measure environmental students’ foundational knowledge and understanding of complex systems-level concepts. Specifically, the project will apply an established machine learning method of evaluating constructed response (short answer) questions to create a Next Generation Concept Inventory. This approach to concept inventory construction will create a new set of constructed-response items and associated automated scoring models focused on complex Food-Energy-Water Nexus systems, a topic typically addressed in environmental programs. The project will evaluate the concept inventory’s validity and reliability to ensure that it will provide high-quality information that can be used by environmental educators and program administrators, as well as for research on STEM education and assessment. The project team will first determine common Food-Energy-Water Nexus concepts and learning outcomes through examination of introductory course materials from environmental programs across the nation. Development of the Next Generation Concept Inventory targeting these concepts/outcomes will follow established methods for concept inventory construction, including the use of interviews with introductory environmental program students to reveal student preconceptions and to develop the constructed response questions. The information gleaned from reviewing environmental curricula across the United States, combined with measurements of student learning from the Next Generation Concept Inventory, can inform curricular and staffing decisions regarding college environmental science and studies programs. Thus, the project has the potential to benefit faculty and students in environmental programs by providing a valid and reliable instrument for evaluating student learning, course outcomes, and program effectiveness. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过改善本科环境课程的教学实践来服务于国家利益。为此,该项目将开发和测试一个书面的反应概念清单,以衡量本科生对复杂的食物-能源-水系统的知识。传统的概念量表广泛应用于许多学科,以衡量学生对学科中关键思想的理解。 这些概念清单使用多项选择题的答案来衡量学生的知识。然而,从要求学生用自己的话来证明他们的知识的问题中,可以更深入地了解学生的想法。该项目计划开发一个“下一代概念清单”,将使用简短的答案问题和自动评分的学生回答有关跨学科,系统级的概念的问题。这个概念清单的可用性,预计将帮助教师评估他们的学生对复杂的环境概念的理解,以及评估和比较内和程序之间的学习。这些信息,反过来,可以用来提高教学效率在环境方案,并可能作为一个模型,类似的方法在其他学科。为了更好地通知那些谁教,制定课程的决定,并管理大学水平的环境计划,该项目将开发一个评估工具,以衡量环境学生的基础知识和复杂的系统级概念的理解。具体而言,该项目将应用一种已建立的机器学习方法来评估构建的响应(简答)问题,以创建下一代概念清单。这种概念库存构建方法将创建一组新的构建响应项目和相关的自动评分模型,重点关注复杂的食品-能源-水关系系统,这是环境计划中通常涉及的主题。该项目将评估概念清单的有效性和可靠性,以确保它将提供高质量的信息,可用于环境教育工作者和项目管理人员,以及对STEM教育和评估的研究。项目团队将首先通过检查全国各地环境项目的入门课程材料,确定常见的食品-能源-水关系概念和学习成果。针对这些概念/成果的下一代概念清单的开发将遵循概念清单构建的既定方法,包括使用与介绍性环境项目学生的访谈来揭示学生的先入之见并开发构建的响应问题。从审查美国各地的环境课程收集的信息,结合学生学习的测量从下一代概念清单,可以告知有关大学环境科学和研究计划的课程和人员配置的决定。因此,该项目有可能通过提供一个有效和可靠的工具来评估学生的学习,课程成果和方案的有效性,以有利于教师和学生在环境方案。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Haudek其他文献
Utilizing Deep Learning AI to Analyze Scientific Models: Overcoming Challenges
- DOI:
10.1007/s10956-025-10217-0 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:5.500
- 作者:
Tingting Li;Kevin Haudek;Joseph Krajcik - 通讯作者:
Joseph Krajcik
Employing automatic analysis tools aligned to learning progressions to assess knowledge application and support learning in STEM
- DOI:
10.1186/s40594-024-00516-0 - 发表时间:
2024-11-08 - 期刊:
- 影响因子:8.000
- 作者:
Leonora Kaldaras;Kevin Haudek;Joseph Krajcik - 通讯作者:
Joseph Krajcik
Kevin Haudek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Haudek', 18)}}的其他基金
Developing Open Response Assessments to Evaluate How Undergraduates Engage in Mathematical Sensemaking in Biology, Chemistry, and Physics
开发开放式反应评估来评估本科生如何参与生物学、化学和物理领域的数学意义建构
- 批准号:
2235487 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Evaluating Effects of Automatic Feedback Aligned to a Learning Progression to Promote Knowledge-In-Use
评估与学习进度相一致的自动反馈对促进知识使用的效果
- 批准号:
2200757 - 财政年份:2022
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Learning Progressions on the Development of Principle-based Reasoning in Undergraduate Physiology (LeaP UP)
合作研究:本科生生理学中基于原理的推理发展的学习进展(LeaP UP)
- 批准号:
1660643 - 财政年份:2017
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
Collaborative Research: ArguLex - Applying Automated Analysis to a Learning Progression for Argumentation
协作研究:ArguLex - 将自动分析应用于论证的学习进程
- 批准号:
1561159 - 财政年份:2016
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: PCK*Lex: Applying Computerized Lexical Analysis to Develop a Cost-Effective Measure of Science Teacher Pedagogical Content Knowledge
合作研究:PCK*Lex:应用计算机词汇分析来开发科学教师教学内容知识的经济有效的衡量标准
- 批准号:
1438739 - 财政年份:2014
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Collaborative Research: Expanding a National Network for Automated Analysis of Constructed Response Assessments to Reveal Student Thinking in STEM
合作研究:扩大构建反应评估自动分析的国家网络,以揭示学生在 STEM 中的思维
- 批准号:
1323162 - 财政年份:2013
- 资助金额:
$ 14.5万 - 项目类别:
Continuing Grant
相似国自然基金
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
相似海外基金
NSF Engines Development Award: Developing innovative solutions for next-generation factory-built housing (IN, MI)
NSF 发动机开发奖:为下一代工厂建造的住房开发创新解决方案(印第安纳州、密歇根州)
- 批准号:
2315483 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Cooperative Agreement
Developing vitrimers: next generation reusable plastics
开发 vitrimer:下一代可重复使用塑料
- 批准号:
DP240102221 - 财政年份:2024
- 资助金额:
$ 14.5万 - 项目类别:
Discovery Projects
Collaborative Research: Tools 4 Cells: Developing Next Generation Methods for Studying Cytoskeletal Factors in the Cell Nucleus
合作研究:工具 4 细胞:开发研究细胞核中细胞骨架因子的下一代方法
- 批准号:
2306188 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Developing next-generation portable rapid tests for food authenticity
开发下一代便携式食品真实性快速测试仪
- 批准号:
2886750 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Studentship
Developing a next generation in vitro 3D immune organoids system for studying vaccine-induced immune response and immune-ageing across the life-course
开发下一代体外 3D 免疫类器官系统,用于研究疫苗诱导的免疫反应和整个生命过程中的免疫衰老
- 批准号:
NC/X002349/1 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Research Grant
REU Site: Developing next generation entrepreneurs in sustainable manufacturing
REU 网站:培养可持续制造领域的下一代企业家
- 批准号:
2244499 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Developing and Validating Arts-Based Learning to Promote Next Generation Patient Engagement
开发和验证基于艺术的学习以促进下一代患者参与
- 批准号:
23K00239 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a Diverse Next Generation of Leaders in Respiratory Science
培养多元化的下一代呼吸科学领导者
- 批准号:
10555145 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Collaborative Research: Tools 4 Cells: Developing Next Generation Methods for Studying Cytoskeletal Factors in the Cell Nucleus
合作研究:工具 4 细胞:开发研究细胞核中细胞骨架因子的下一代方法
- 批准号:
2306187 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Standard Grant
Developing next-generation, AI-enabled, medical image processing for multiple sclerosis clinical trials and routine care.
开发用于多发性硬化症临床试验和日常护理的下一代人工智能医学图像处理。
- 批准号:
2877679 - 财政年份:2023
- 资助金额:
$ 14.5万 - 项目类别:
Studentship