Modeling Sources of Variation in Interaction Networks Using a C. Elegans Microbiome Model
使用线虫微生物组模型对交互网络中的变异源进行建模
基本信息
- 批准号:2014173
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Host-associated microbiomes are shaped by networks of interactions among microbes and between microbes and the host. It is not possible to directly measure these interactions, requiring inference from co-occurrence data. Such inferences are prone to high rates of false positives and negatives, and the complications found in real data - in particular demographic noise, higher-order and frequency-dependent interactions among microbes, and variation across hosts - are not well understood. In this project a direct test will be developed using the utility of co-occurrence-based interaction networks in understanding host-associated microbial communities where these biologically realistic complications are present. Further, the PIs will test the common implicit assumption that variation in individual hosts within a population does not fundamentally alter the inter-species interactions in a microbiome, such that the same interaction network can be used to understand the microbiome. Educational and outreach activities are specifically designed to excite and engage students at all levels in biophysics and theoretical biology. The proposed work will actively engage undergraduate students from the Biology and Physics programs in independent biophysics research. Further, quantitative laboratory modules are being developed for the Biology and Physics curricula at Emory to familiarize students with core concepts in population dynamics and to introduce the concepts of variation and hidden states in biological data.The PIs will use the nematode worm Caenorhabditis elegans and an eight-species bacterial consortium from the worm's native microbiome. The worm is a powerful model system for understanding microbial community assembly, where bottom-up assembly and quantification microbiome composition in large numbers of homozygous individual hosts is possible on short experimental time scales, allowing rapid generation of large, high-quality data sets describing microbiome composition and variation. Using this tractable system, the PIs will obtain microbiome composition data from large numbers of individual hosts, directly parameterizing interactions among microbes (competition, facilitation etc.) and between individual microbial species and the host (e.g. colonization rates and densities in the intestine). Using these data, they will fit and constrain neutral and near-neutral stochastic models of community assembly to: 1) determine the interactions shaping these systems, 2) measure the effects of higher-order and frequency-dependent interactions on inferred networks, and 3) test the assumption that microbial interaction networks are conserved across hosts. The project will use a tractable experimental system as a tool to understand a complex network inference problem on noisy data with hidden underlying states, a problem that is highly relevant for real- world understanding of microbiome data and other data from systems where interactions are not directly measurable, and is therefore relevant for the Physics of Living Systems program. The combined expertise of the PIs will allow rigorous analysis of the technical problem while maintaining a firm connection of these analyses and conclusions to the biological reality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宿主相关微生物组是由微生物之间以及微生物与宿主之间的相互作用网络形成的。不可能直接测量这些相互作用,需要从共现数据中进行推断。这样的推断容易出现高比例的假阳性和假阴性,而在真实的数据中发现的复杂性--特别是人口统计学噪声、微生物之间的高阶和频率依赖性相互作用以及宿主之间的变异--还没有得到很好的理解。在这个项目中,将开发一个直接的测试,使用基于共现的相互作用网络的效用,了解这些生物现实的并发症存在的宿主相关的微生物群落。此外,PI将测试常见的隐含假设,即群体中个体宿主的变化不会从根本上改变微生物组中的物种间相互作用,因此可以使用相同的相互作用网络来理解微生物组。教育和推广活动是专门设计的,以激发和吸引各级学生在生物物理学和理论生物学。拟议的工作将积极吸引生物学和物理学专业的本科生参与独立的生物物理学研究。此外,正在为埃默里大学的生物学和物理学课程开发定量实验室模块,以使学生熟悉人口动态学的核心概念,并介绍生物数据中的变异和隐藏状态的概念。蠕虫是一个强大的模型系统,用于了解微生物群落组装,其中自下而上的组装和定量微生物组组成在大量纯合个体宿主中是可能的,在短的实验时间尺度上,允许快速生成描述微生物组组成和变异的大型高质量数据集。使用这个易于处理的系统,PI将从大量个体宿主中获得微生物组组成数据,直接参数化微生物之间的相互作用(竞争,促进等)。以及个体微生物物种与宿主之间的差异(例如肠道中的定殖率和密度)。使用这些数据,他们将拟合和约束社区组装的中性和近中性随机模型,以:1)确定塑造这些系统的相互作用,2)测量高阶和频率依赖性相互作用对推断网络的影响,以及3)测试微生物相互作用网络在宿主中保守的假设。该项目将使用一个易于处理的实验系统作为工具,以了解具有隐藏底层状态的噪声数据的复杂网络推理问题,该问题与真实的世界对微生物组数据和来自相互作用不可直接测量的系统的其他数据的理解高度相关,因此与生命系统物理学计划相关。PI的综合专业知识将允许对技术问题进行严格的分析,同时保持这些分析和结论与生物现实的牢固联系。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using Single-Worm Data to Quantify Heterogeneity in Caenorhabditis elegans-Bacterial Interactions
使用单蠕虫数据量化秀丽隐杆线虫-细菌相互作用的异质性
- DOI:10.3791/64027
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Taylor, Megan N.;Spandana Boddu, Satya;Vega, Nic M.
- 通讯作者:Vega, Nic M.
Statistical properties of large data sets with linear latent features
具有线性潜在特征的大数据集的统计特性
- DOI:10.1103/physreve.106.014102
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Fleig, Philipp;Nemenman, Ilya
- 通讯作者:Nemenman, Ilya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nic Vega其他文献
Nic Vega的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Uncovering sources of human gene expression variation in a globally diverse cohort
揭示全球多样化群体中人类基因表达变异的来源
- 批准号:
10607411 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Using Small Area Variation Analysis to Investigate Sources of Practice Variation for Febrile Infants at Risk for Invasive Bacterial Infections
使用小面积变异分析来调查有侵袭性细菌感染风险的发热婴儿的实践变异来源
- 批准号:
10588846 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Analysis of long-term variation of atmospheric microplastics, elucidation of their sources and estimation of their respiratory effects
分析大气微塑料的长期变化,阐明其来源并估计其呼吸影响
- 批准号:
22K12421 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Socioeconomic and Cardiovascular Sources of Cross-National Variation in Cognitive Health Among Older Adults
老年人认知健康跨国差异的社会经济和心血管来源
- 批准号:
10586126 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Socioeconomic and Cardiovascular Sources of Cross-National Variation in Cognitive Health Among Older Adults
老年人认知健康跨国差异的社会经济和心血管来源
- 批准号:
10379328 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Understanding Access to Justice: Social Sources of Variation in Everyday Relationships to Law
了解诉诸司法的机会:日常法律关系变化的社会根源
- 批准号:
1946520 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Improving wheat grain quality by exploiting novel sources of genetic variation
通过利用新的遗传变异来源提高小麦籽粒品质
- 批准号:
BB/S020101/1 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Genetic, plastic and epigenetic sources of variation for climate change responses in conifers
针叶树气候变化反应的遗传、塑料和表观遗传变异来源
- 批准号:
RGPIN-2015-04683 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Genetic, plastic and epigenetic sources of variation for climate change responses in conifers
针叶树气候变化反应的遗传、塑料和表观遗传变异来源
- 批准号:
RGPIN-2015-04683 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Genetic, plastic and epigenetic sources of variation for climate change responses in conifers
针叶树气候变化反应的遗传、塑料和表观遗传变异来源
- 批准号:
RGPIN-2015-04683 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual