Collaborative Research: Inference for Networks: Bridging the Gap between Metric Spaces and Graphs
协作研究:网络推理:弥合度量空间和图之间的差距
基本信息
- 批准号:2015298
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network data, representing interactions and relationships between units, has become ubiquitous in many science disciplines and technology areas. Analyzing such complex and structurally novel data requires new ideas and tools beyond the scope of classical statistics. A sequence of methods will be developed for several common statistical analyses involving network data, motivated by various applied problems in cyber-security, social behavior studies, genetics, and medical imaging. These methods can be used to identify the risk factors for the reliability of a complex system, to infer social and peer effects on health-related behaviors, to flexibly model the differential networks between genes, and to infer neuron functionality from brain images. The results will be disseminated through publications and presentations, but will also be incorporated in teaching. The research will include projects suitable for student participation at various levels, and undergraduate research training will be emphasized. The codes will be provided through statistical packages implemented in the programming language R for broader use. The broad theme of the research is developing versatile and flexible network analysis tools by connecting and extending mature statistical methods in metric space to network data. Overall, the technical challenges in developing these tools range from the lack of clear definitions for sampling units and sample sizes, to the discrete and noisy nature of network observations. Addressing such challenges requires extensions and combinations of tools from different research areas, including random matrix theory, optimization algorithms, and statistical inference. Collaborations between the PI and researchers in computer science, social science, and medical sciences will provide opportunities to apply the developed methods to real-world problems in these domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络数据代表了单位之间的相互作用和关系,在许多科学学科和技术领域中已经变得无处不在。分析如此复杂和结构新颖的数据需要超越经典统计学范围的新想法和新工具。由于网络安全、社会行为研究、遗传学和医学成像中的各种应用问题,将为涉及网络数据的几种常见统计分析开发一系列方法。这些方法可以用来识别复杂系统可靠性的风险因素,推断社会和同伴对健康相关行为的影响,灵活地对基因之间的差异网络进行建模,以及从大脑图像推断神经元功能。结果将通过出版物和演示文稿传播,但也将纳入教学。研究将包括适合学生参与各级的项目,并将强调本科生的研究培训。这些代码将通过以编程语言R实现的统计程序包提供,以便更广泛地使用。研究的广泛主题是通过将公制空间中的成熟统计方法连接和扩展到网络数据来开发通用和灵活的网络分析工具。总体而言,开发这些工具的技术挑战从缺乏对抽样单位和样本大小的明确定义,到网络观测的离散和噪声性质。应对这些挑战需要来自不同研究领域的工具的扩展和组合,包括随机矩阵理论、优化算法和统计推断。PI与计算机科学、社会科学和医学科学的研究人员之间的合作将提供将开发的方法应用于这些领域的现实世界问题的机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incrementality Bidding via Reinforcement Learning under Mixed and Delayed Rewards
混合和延迟奖励下的强化学习增量竞价
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Varadaraja, Ashwinkumar;Feng, Zhe;Li, Tianxi;Xu Haifeng
- 通讯作者:Xu Haifeng
Link Prediction for Egocentrically Sampled Networks
- DOI:10.1080/10618600.2022.2163648
- 发表时间:2018-03
- 期刊:
- 影响因子:2.4
- 作者:Yun-Jhong Wu;E. Levina;Ji Zhu
- 通讯作者:Yun-Jhong Wu;E. Levina;Ji Zhu
Fitting low-rank models on egocentrically sampled partial networks
在以自我为中心采样的部分网络上拟合低秩模型
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chan, Angus G;Li, Tianxi
- 通讯作者:Li, Tianxi
Informative core identification in complex networks
复杂网络中的信息核心识别
- DOI:10.1093/jrsssb/qkac009
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Miao, Ruizhong;Li, Tianxi
- 通讯作者:Li, Tianxi
Linear regression and its inference on noisy network‐linked data
- DOI:10.1111/rssb.12554
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Can M. Le;Tianxi Li
- 通讯作者:Can M. Le;Tianxi Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tianxi Li其他文献
Statistical inference in two-stage online controlled experiments with treatment selection and validation
两阶段在线对照实验中的统计推断以及治疗选择和验证
- DOI:
10.1145/2566486.2568028 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Alex Deng;Tianxi Li;Yu Guo - 通讯作者:
Yu Guo
Appendix to “Hierarchical community detection by recursive partitioning”
“通过递归划分进行分层社区检测”的附录
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Tianxi Li;Sharmodeep Bhattacharyya;†. KoenVandenBerge;Purnamrita Sarkar;Peter J. Bickel;E. Levina - 通讯作者:
E. Levina
Exploratory quantification of 3D spatial competition in ecotone of trees and bamboos using terrestrial laser scanner
使用地面激光扫描仪探索性量化树木和竹子生态交错带的 3D 空间竞争
- DOI:
10.1016/j.foreco.2023.121085 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Jiayuan Lin;Yangyuan Chen;Rui Jiang;Tianxi Li - 通讯作者:
Tianxi Li
Hierarchical community detection by recursive bi-partitioning
通过递归双分区进行分层社区检测
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Tianxi Li;Sharmodeep Bhattacharyya;Purnamrita Sarkar;Peter J. Bickel;E. Levina - 通讯作者:
E. Levina
Tianxi Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
- 批准号:
2414688 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311249 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SHF: MEDIUM: General and Scalable Pluggable Type Inference
合作研究:SHF:MEDIUM:通用且可扩展的可插入类型推理
- 批准号:
2312263 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324490 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: New Theory and Methods for High-Dimensional Multi-Task and Transfer Learning Inference
合作研究:高维多任务和迁移学习推理的新理论和新方法
- 批准号:
2324489 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Parametric Inference of Temporal Data
合作研究:时态数据的非参数推理
- 批准号:
2311251 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312502 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant














{{item.name}}会员




