Semiparametric Methods for Analysis of Complex Data

复杂数据分析的半参数方法

基本信息

  • 批准号:
    2015569
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

In the era of big data, complex data naturally arise in modern scientific applications. For example, the advance in computation and technology has enabled the routine collection of high-frequency functional data and high-resolution images. Scientists are facing daunting challenges from the data, including the massive scale, intricate dependence structures, and various shape constraints that are vital for scientific interpretability. This project will develop new flexible methods for shape-constrained regression and high-dimensional quantile regression to comprehensively depict the dependence between variables, with a focus on providing scalable implementation and theoretically guaranteed inference. These tools will address pressing statistical and computational challenges, leading to broad applications in medicine, neuroscience, cancer-related studies, and industrial settings. The project will also develop and distribute open-source software and provide research opportunities for undergraduate and graduate students. The project will develop novel semiparametric methods for high-dimensional quantile regression and shape-constrained regression. The PI will investigate a paradigm shift in high-dimensional regression from a joint, iterative scheme to a two-step, distributed scheme. This strategy allows the utilization of parallel computation and is coupled with proper uncertainty propagation to ensure statistical optimality and frequentist coverage of simultaneous confidence and credible bands. Several regimes using functional and image data will be considered, for example, mean regression, quantile regression, and variable selection. The project will also develop new methods for nonparametric regression under shape constraints, including local sparsity and stationary points of unknown functions. The project will enrich the statistical toolbox to cope with complex data by developing a suite of semiparametric methods that are theoretically sound and computationally efficient.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据时代,复杂数据在现代科学应用中自然产生。例如,计算和技术的进步使高频功能数据和高分辨率图像的常规收集成为可能。科学家们正面临着来自数据的巨大挑战,包括庞大的规模,复杂的依赖结构,以及对科学可解释性至关重要的各种形状约束。该项目将开发新的灵活的形状约束回归和高维分位数回归方法,以全面描述变量之间的依赖关系,重点是提供可扩展的实现和理论上有保证的推理。这些工具将解决紧迫的统计和计算挑战,从而在医学、神经科学、癌症相关研究和工业环境中得到广泛应用。该项目还将开发和分发开源软件,并为本科生和研究生提供研究机会。该项目将为高维分位数回归和形状约束回归开发新的半参数方法。PI将研究高维回归从联合迭代方案到两步分布式方案的范式转变。该策略允许利用并行计算,并与适当的不确定性传播,以确保统计最优性和频率覆盖的同时置信度和可信带。将考虑使用功能和图像数据的几种制度,例如,均值回归,分位数回归和变量选择。该项目还将开发在形状约束下的非参数回归的新方法,包括局部稀疏性和未知函数的稳定点。该项目将通过开发一套理论上合理且计算效率高的半参数方法来丰富统计工具箱,以科普复杂的数据。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zejian Liu;Meng Li
  • 通讯作者:
    Zejian Liu;Meng Li
Efficient in-situ image and video compression through probabilistic image representation
通过概率图像表示实现高效的原位图像和视频压缩
  • DOI:
    10.1016/j.sigpro.2023.109268
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Liu, Rongjie;Li, Meng;Ma, Li
  • 通讯作者:
    Ma, Li
Functional group bridge for simultaneous regression and support estimation
  • DOI:
    10.1111/biom.13684
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Zhengjia Wang;J. Magnotti;M. Beauchamp;Meng Li
  • 通讯作者:
    Zhengjia Wang;J. Magnotti;M. Beauchamp;Meng Li
Inference in functional linear quantile regression
  • DOI:
    10.1016/j.jmva.2022.104985
  • 发表时间:
    2016-02
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    M. Li;K. Wang;A. Maity;A. Staicu
  • 通讯作者:
    M. Li;K. Wang;A. Maity;A. Staicu
Learning Asymmetric and Local Features in Multi-Dimensional Data Through Wavelets With Recursive Partitioning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meng Li其他文献

Profiling Attacks against ECC: Side Channel Analysis Based on Deep Learning for Curve-25519
针对 ECC 的攻击分析:基于 Curve-25519 深度学习的侧信道分析
Cross-Polarization Carpet Cloaking Based on Polarization Conversion Metasurfaces
基于偏振转换超表面的交叉偏振地毯隐形
  • DOI:
    10.1109/jsen.2022.3150388
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Tianqi Zhao;Qingyu Wang;Meng Li;Bo Fang;Peng Chen;Jianxun Lu;Chenxia Li;Xufeng Jing
  • 通讯作者:
    Xufeng Jing
Study on synthesis and properties of nanoparticles loaded with amaryllidaceous alkaloids
石蒜属生物碱纳米粒子的合成及性能研究
  • DOI:
    10.1515/biol-2017-0041
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lihong Duan;Meng Li;Chunbao Wang;Qingmei Wang;Quanquan Liu;Wanfeng Shang;Yajin Shen;Zhuohua Lin;Tongyang Sun;Daping Quan;Zhengzhi Wu
  • 通讯作者:
    Zhengzhi Wu
A laser-activated multifunctional targeted nanoagent for imaging and gene therapy in a mouse xenograft model with retinoblastoma Y79 cells
一种激光激活的多功能靶向纳米制剂,用于视网膜母细胞瘤 Y79 细胞的小鼠异种移植模型中的成像和基因治疗
  • DOI:
    10.1016/j.actbio.2018.02.006
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Mingxing Wu;Haibo Xiong;Hongmi Zou;Meng Li;Pan Li;Yu Zhou;Yan Xu;Jia Jian;Fengqiu Liu;Hongyun Zhao;Zhigang Wang;Xiyuan Zhou
  • 通讯作者:
    Xiyuan Zhou
群智感知中一个扰动压缩感知协议
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zijian Zhang;Chengcheng Jin;Meng Li;Liehuang Zhu
  • 通讯作者:
    Liehuang Zhu

Meng Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Meng Li', 18)}}的其他基金

How CTIP2 deficiency drives medium spiny neuron degeneration and dysfunction: implications in Huntington's disease pathogenesis
CTIP2 缺陷如何导致中型棘神经元变性和功能障碍:对亨廷顿病发病机制的影响
  • 批准号:
    MR/R022429/1
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
A Stem Cell Model to Study Human Cortical Interneuron Function
研究人类皮质中间神经元功能的干细胞模型
  • 批准号:
    MR/L020807/1
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Research Grant
Money, Lives and Scarcity - How do people allocate healthcare resources?
金钱、生命和稀缺——人们如何分配医疗资源?
  • 批准号:
    1357170
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Functional identification of molecules that promote midbrain dopaminergic fate and neuritogenesis from embryonic stem ce
胚胎干细胞中促进中脑多巴胺能命运和神经细胞发生的分子的功能鉴定
  • 批准号:
    G117/560/2
  • 财政年份:
    2006
  • 资助金额:
    $ 10万
  • 项目类别:
    Fellowship

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Semiparametric methods of policy analysis with social and economic network data
利用社会和经济网络数据进行政策分析的半参数方法
  • 批准号:
    1851647
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Semiparametric mixture methods for the analysis of correlated counting and survival processes with applications to study design
用于分析相关计数和生存过程的半参数混合方法及其在研究设计中的应用
  • 批准号:
    46119-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric mixture methods for the analysis of correlated counting and survival processes with applications to study design
用于分析相关计数和生存过程的半参数混合方法及其在研究设计中的应用
  • 批准号:
    46119-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
  • 批准号:
    261567-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric and Semiparametric Methods for Econometric Analysis
计量经济分析的非参数和半参数方法
  • 批准号:
    1156266
  • 财政年份:
    2012
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
  • 批准号:
    261567-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric mixture methods for the analysis of correlated counting and survival processes with applications to study design
用于分析相关计数和生存过程的半参数混合方法及其在研究设计中的应用
  • 批准号:
    46119-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
  • 批准号:
    261567-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric mixture methods for the analysis of correlated counting and survival processes with applications to study design
用于分析相关计数和生存过程的半参数混合方法及其在研究设计中的应用
  • 批准号:
    46119-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametric statistical methods for censored or missing data and their applications in survival analysis and other related areas
截尾或缺失数据的半参数统计方法及其在生存分析和其他相关领域的应用
  • 批准号:
    261567-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了