EAGER: Combining van der Waals heterostructures and superlattices: new approach to 2D tunable optoelectronic devices

EAGER:结合范德华异质结构和超晶格:二维可调谐光电器件的新方法

基本信息

  • 批准号:
    2015668
  • 负责人:
  • 金额:
    $ 20.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Optoelectronic devices bridge optics to electronics and they are ubiquitous in our society. They include solid state light sources such as light emitting diodes and laser diodes, as well as modulators (that can encode an electrical or radiofrequency signal onto light) and detectors (which can convert light back into an electrical signal). Many modern optoelectronic devices rely on quantum confinement effects, and more in general on mesoscopic quantum structures which can be realized, for instance, by growing a sequence of thin layers of semiconductors (with thicknesses in the order of few nanometers). These structures possess new electrical and optical properties which the bulk semiconductors lack and are widely used for lasers (e.g. in quantum cascade lasers and quantum well laser diodes), modulators (e.g. in electro-absorption modulators) and detectors (such as in quantum dots and quantum well based detectors). New materials and technologies are very actively investigated by the scientific community to create faster, smaller and low-cost optoelectronic devices, and integration on silicon is often a must for telecommunications and imaging applications. 2D and van der Waals materials have attracted a lot of attention for optoelectronics, since they host new physical effects and can often be tuned electrically, by applying a voltage between the 2D material and a substrate via a gate oxide. However, the creation of large-scale quantum confinement in these materials is prohibitive since it is limited by the resolution of the lithographic and etching processes used to pattern either the 2D materials or the electrical gates.So far, quantum engineering of 2D materials has been achieved mostly using heterostructures, including the realization of Moiré patterns. But these approaches have limits for large scale production and typically show weak effects. This EAGER research project aims to explore a new technique to create large scale quantum confined effects in 2D materials and to demonstrate devices based on this new technology. The approach is based on a new gate oxide fabrication technology. The gate consists of alternating layers of different oxides that are used to create a variable electrical potential on 2D materials when a voltage is applied on the gate. Unlike their bulk 3D counterparts, these quantum confined structures are widely tunable since the depth of the quantum wells is proportional to the applied gate. The PI plans to use these new effects to realize new types of modulators and photodetectors. Modulators can be realized by creating arrays of coupled two-dimensional quantum wells (also known as superlattices), which absorb light in different ways accordingly to the applied voltage. Both interband and intersubband absorptions in the 2D materials can be engineered using this new approach. Because these structures can be gated with highly conductive electrodes, the modulation speed is expected to be at least one order of magnitude greater than today’s modulators based on 2D materials. Furthermore, these devices will benefit from the possibility of quantum-engineering the excitons in 2D materials which appear at room temperature in the visible and near infrared ranges even when no quantum confinement is used. In addition to its obvious technological relevance, this project will advance understanding of 2D materials and associated quantum phenomena and offer opportunities for integrating this new knowledge in several courses on materials and devices at Harvard University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光电设备将光学与电子学联系起来,它们在我们的社会中无处不在。它们包括固态光源,例如发光二极管和激光二极管,以及调制器(可以将电信号或射频信号编码到光上)和探测器(可以将光转换回电信号)。许多现代光电器件依赖于量子限制效应,更普遍地依赖于介观量子结构,例如,可以通过生长一系列半导体薄层(厚度约为几纳米)来实现。这些结构具有体半导体所缺乏的新的电学和光学特性,并广泛用于激光器(例如在量子级联激光器和量子阱激光二极管中)、调制器(例如在电吸收调制器中)和探测器(例如在量子点和基于量子阱的探测器中)。科学界正在积极研究新材料和技术,以创造更快、更小和低成本的光电器件,而硅上的集成通常是电信和成像应用的必须条件。二维和范德华材料在光电子领域引起了广泛关注,因为它们具有新的物理效应,并且通常可以通过栅极氧化物在二维材料和基板之间施加电压来进行电调谐。然而,在这些材料中创建大规模量子限制是令人望而却步的,因为它受到用于图案化 2D 材料或电门的光刻和蚀刻工艺的分辨率的限制。到目前为止,2D 材料的量子工程主要是使用异质结构来实现的,包括莫尔图案的实现。但这些方法对于大规模生产有限制,并且通常效果较弱。该 EAGER 研究项目旨在探索一种新技术,在二维材料中产生大规模量子限制效应,并展示基于该新技术的设备。该方法基于新的栅极氧化物制造技术。栅极由不同氧化物的交替层组成,用于在栅极上施加电压时在 2D 材料上产生可变电势。与块状 3D 结构不同,这些量子限制结构具有广泛的可调性,因为量子阱的深度与所应用的栅极成正比。 PI 计划利用这些新效应来实现新型调制器和光电探测器。调制器可以通过创建耦合的二维量子阱(也称为超晶格)阵列来实现,这些量子阱根据所施加的电压以不同的方式吸收光。二维材料中的带间和子带间吸收都可以使用这种新方法进行设计。由于这些结构可以用高导电电极进行选通,因此调制速度预计将比当今基于 2D 材料的调制器至少高一个数量级。此外,这些设备将受益于对二维材料中的激子进行量子工程的可能性,即使不使用量子限制,这些激子也会在室温下出现在可见光和近红外范围内。除了其明显的技术相关性外,该项目还将增进对二维材料和相关量子现象的理解,并提供将这些新知识整合到哈佛大学材料和设备的几门课程中的机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Federico Capasso其他文献

Time Reversal Differentiation of FDTD for Photonic Inverse Design
用于光子逆设计的 FDTD 时间反演微分
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Rui Jie Tang;S. W. D. Lim;M. Ossiander;Xinghui Yin;Federico Capasso
  • 通讯作者:
    Federico Capasso
MIT Open Access Articles Bonding, antibonding and tunable optical forces in asymmetric membranes
麻省理工学院开放获取文章非对称膜中的键合、反键合和可调光学力
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro W. Rodriguez;A. McCauley;Pui;David P. Woolf;E. Iwase;Federico Capasso;M. Lončar;Steven G. Johnson
  • 通讯作者:
    Steven G. Johnson
Parallel Polarization State Generation
平行极化态产生
  • DOI:
    10.1038/srep26019
  • 发表时间:
    2016-05-17
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Alan She;Federico Capasso
  • 通讯作者:
    Federico Capasso
Free-standing bilayer metasurfaces in the visible
独立式双层超表面在可见光范围内
  • DOI:
    10.1038/s41467-025-58205-7
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Ahmed H. Dorrah;Joon-Suh Park;Alfonso Palmieri;Federico Capasso
  • 通讯作者:
    Federico Capasso
Metasurface Polarization Optics
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Federico Capasso
  • 通讯作者:
    Federico Capasso

Federico Capasso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Federico Capasso', 18)}}的其他基金

Mid-infrared reconfigurable pulse generators
中红外可重构脉冲发生器
  • 批准号:
    2221715
  • 财政年份:
    2022
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum cascade laser transceivers for terahertz wireless communication
合作研究:用于太赫兹无线通信的量子级联激光收发器
  • 批准号:
    1807323
  • 财政年份:
    2018
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantum cascade laser sources of high-power, coherent frequency combs
合作研究:高功率相干频率梳的量子级联激光源
  • 批准号:
    1614631
  • 财政年份:
    2016
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
EAGER: A new coupling scheme for surface plasmon polaritons using structured illumination
EAGER:使用结构照明的表面等离子体激元的新耦合方案
  • 批准号:
    1347251
  • 财政年份:
    2013
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Ultrashort pulse generation and mid-infrared frequency combs from quantum cascade lasers
合作研究:量子级联激光器的超短脉冲生成和中红外频率梳
  • 批准号:
    1230477
  • 财政年份:
    2012
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant

相似海外基金

Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
  • 批准号:
    2345129
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
  • 批准号:
    MR/Y012895/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Research Grant
Risk Assuring Future Structure Critical Systems: Combining 21st Century Science with Engineering Intuition - Renewal
确保未来结构关键系统的风险:将 21 世纪科学与工程直觉相结合 - Renewal
  • 批准号:
    MR/Y020235/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Fellowship
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Co-creating digital education about parenting and father-inclusive practice: combining QL impact research and commercialisation for the social good
共同创建有关育儿和父亲包容性实践的数字教育:将 QL 影响研究与商业化相结合,造福社会
  • 批准号:
    MR/Y00356X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了