Collaborative Research: Systemic Signaling Networks in Arabidopsis

合作研究:拟南芥系统信号网络

基本信息

项目摘要

Stresses such as herbivore or pathogen attack can severely limit plant growth and development, for example, by reducing crop production and impacting food security around the World. Plants possess natural sensory systems that allow them to detect these stresses and then mount defenses against them. Defining how these response systems operate is therefore important in both understanding how plants survive and thrive in the natural world and how to effectively capitalize on these innate responses to improve the resilience of agriculture. Recent research has made key advances in characterizing these signaling systems within the plant, revealing that plants deploy an internal biochemical communication system that broadcasts stress information from its site of perception to the rest of the plant body. This information then triggers the production of defenses such as the accumulation of toxic chemicals, priming even the non-attacked parts of the plant for defense. This communication system operates quickly, spreading information throughout the plant over the course of minutes. Despite such a central role in coordinating each plant’s rapid stress responses, the cellular components that trigger this system and then transmit the stress signal throughout the plant remain poorly defined. This project will focus on characterizing the role of two major cellular messengers, the calcium ion and reactive oxygen species, in propagating these rapid stress signals. The investigation will also explore how amino acids released by the plant may act as initial triggers for this response. This work will train graduate students and postdoctoral fellows to help prepare them for their future careers in research and science. The project will also provide public education on plant stress responses and provide training to students in effective science communication.Recent studies have revealed a rapid systemic signaling system in plants mediated through Ca2+- and reactive oxygen species-dependent events. This research program seeks to extend our understanding of these processes to the levels of the channels and tissue architectures that support this signaling network. The Arabidopsis thaliana Glutamate-Like Receptor (GLR) channels and reactive oxygen species-producing NADPH oxidases have been linked to this rapid systemic propagation of Ca2+-based signals. Therefore, this study will focus on defining the role(s) of these proteins in systemic transmission of local wound, pathogen elicitor (flg22) and salt stresses. The specific aims are to: (1) compare the patterns of Ca2+ and ROS signaling that occur during the initiation and propagation of long-distance signals in response to these stimuli and define the spatial and temporal characteristics of the channels and ROS-related enzymes supporting these activities; and (2) explore how glutamate and other amino acid signals are involved in triggering these long-distance signals. These goals will be accomplished using a combination of bioreporter imaging and mutant and molecular analyses. This study will reveal new insight into the molecular machinery underlying rapid plant systemic signaling. The project will help define the spatial and temporal changes in calcium and reactive oxygen species that relay information about stresses throughout the plant. The research will also help define whether information about each stress is likely encoded in specific signaling dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
食草动物或病原体攻击等压力会严重限制植物的生长和发育,例如,通过减少作物产量和影响世界各地的粮食安全。植物具有天然的感觉系统,使它们能够检测到这些压力,然后对其进行防御。因此,确定这些反应系统如何运作,对于理解植物如何在自然界中生存和茁壮成长以及如何有效地利用这些先天反应来提高农业的适应能力都很重要。最近的研究在表征植物内的这些信号系统方面取得了关键进展,揭示了植物部署了一个内部生化通信系统,该系统将压力信息从其感知部位广播到植物体的其他部分。然后,这些信息触发了防御的产生,例如有毒化学物质的积累,甚至启动了植物的非攻击部分进行防御。该通信系统运行迅速,在几分钟内将信息传播到整个工厂。尽管在协调每种植物的快速应激反应中起着如此重要的作用,但触发这一系统并随后将应激信号传递到整个植物的细胞成分仍然定义不清。该项目将集中在表征两个主要的细胞信使,钙离子和活性氧,在传播这些快速的压力信号的作用。研究还将探索植物释放的氨基酸如何作为这种反应的初始触发因素。这项工作将培训研究生和博士后研究员,帮助他们为未来的研究和科学事业做好准备。该项目还将提供有关植物胁迫反应的公众教育,并为学生提供有效科学传播的培训。最近的研究表明,植物中存在一个快速的系统性信号系统,该系统通过依赖Ca 2+和活性氧的事件介导。这项研究计划旨在将我们对这些过程的理解扩展到支持这个信号网络的通道和组织结构的水平。拟南芥谷氨酸样受体(GLR)通道和活性氧产生NADPH氧化酶已被链接到这种快速的系统性传播的Ca 2+为基础的信号。因此,本研究将集中于确定这些蛋白质在局部创伤、病原体激发子(flg 22)和盐胁迫的系统性传播中的作用。具体目标是:(1)比较在响应这些刺激的长距离信号的起始和传播期间发生的Ca 2+和ROS信号传导的模式,并定义支持这些活动的通道和ROS相关酶的空间和时间特征;(2)探索谷氨酸和其他氨基酸信号如何参与触发这些长距离信号。这些目标将使用生物报告成像和突变体和分子分析的组合来实现。这项研究将揭示新的见解的分子机制背后的快速植物系统信号。该项目将有助于确定钙和活性氧的空间和时间变化,这些变化传递了整个工厂的压力信息。该研究还将有助于确定有关每种压力的信息是否可能编码在特定的信号动力学中。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Overexpressing Vitamin C Defective 2 reduces fertility and alters Ca2+ signals in Arabidopsis pollen.
过度表达维生素 C 缺陷 2 会降低拟南芥花粉中的生育力并改变 Ca2 信号。
  • DOI:
    10.1093/plphys/kiad031
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Weigand,Chrystle;Brady,Deborah;Davis,JamesA;Speicher,Tori;Bacalso,Jonathan;Jones,Dylan;Miller,Gad;Choi,Won-Gyu;Harper,JeffreyF
  • 通讯作者:
    Harper,JeffreyF
Arabidopsis Ca2+-ATPases 1, 2, and 7 in the endoplasmic reticulum contribute to growth and pollen fitness
  • DOI:
    10.1093/plphys/kiab021
  • 发表时间:
    2021-01-28
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ishka, Maryam Rahmati;Brown, Elizabeth;Harper, Jeffrey F.
  • 通讯作者:
    Harper, Jeffrey F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Won-Gyu Choi其他文献

A study of the relationship between structure and properties of cadmium phosphate glasses
  • DOI:
    10.1007/s13391-012-2120-0
  • 发表时间:
    2013-01-15
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Won-Gyu Choi;Tae-Hee Kim;Dong-Gun Gwoo;Kyung-Bum Kee;Jong-Hwan Kim;Kyung-Suk Han;Bong-Ki Ryu
  • 通讯作者:
    Bong-Ki Ryu

Won-Gyu Choi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2422305
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233701
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233699
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233702
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233703
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: C-COAST: Changing the Culture of our Occupations to Achieve Systemic Transformation
合作研究:实施:C-COAST:改变我们的职业文化以实现系统转型
  • 批准号:
    2233700
  • 财政年份:
    2023
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Increasing Student Success in Community College Mathematics through Active Learning and Systemic Instructional Change
合作研究:通过主动学习和系统教学变革提高学生在社区大学数学中的成功
  • 批准号:
    2013493
  • 财政年份:
    2020
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Increasing Student Success in Community College Mathematics through Active Learning and Systemic Instructional Change
合作研究:通过主动学习和系统教学变革提高学生在社区大学数学中的成功
  • 批准号:
    2013550
  • 财政年份:
    2020
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Increasing Student Success in Community College Mathematics through Active Learning and Systemic Instructional Change
合作研究:通过主动学习和系统教学变革提高学生在社区大学数学中的成功
  • 批准号:
    2013232
  • 财政年份:
    2020
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
OAC Core: Small: Collaborative Research: Conversational Agents for Supporting Sustainable Implementation and Systemic Diffusion of Cyberinfrastructure and Science Gateways
OAC 核心:小型:协作研究:支持网络基础设施和科学网关可持续实施和系统扩散的对话代理
  • 批准号:
    2007100
  • 财政年份:
    2020
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了