CyberTraining: Pilot: Linear Algebra Preparation for Emergent Neural Network Architectures (LAPENNA)
网络培训:试点:紧急神经网络架构的线性代数准备 (LAPENNA)
基本信息
- 批准号:2017673
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, the Linear Algebra Preparation for Emergent Neural Network Architectures (LAPENNA) program is organized to provide essential knowledge to advance literacy in AI to sustain the growth and development of the workforce in the cyberinfrastructure (CI) ecosystem of data-driven science. This program provides integrated expertise to faculty, students, and researchers the knowledge in numerical mathematics, linear algebra software, data-driven methods, and machine learning tools to tackle day to day problems in data science applications. This program aims to prepare college researchers to enable, design, and direct their own in-house data-driven science programs and incorporate perspectives from their research into their course curricula. The knowledge and experiences gathered under the direction of LAPENNA will be beneficial to CI practitioners as well as to general interested parties leading to fostering new collaborative partners and potential research initiatives and workforce training programs.LAPENNA focuses on delivering algorithmic and computational techniques, numerical and programming procedures, and AI software implementation on emergent CPU cloud systems and GPU platforms. It runs two training sessions every year. Ten webinars/lectures are delivered with supporting online tutorials available for general public use. In each session, eight teams of faculty/researchers and students are selected to participate in the LEPENNA program. Each team consists of two members from an institution. The training for each cohort lasts for six months and concludes with an on-site one-week workshop. Follow-up Q & A sessions connect the college teams and PIs during and after the training events and continue to provide hardware and software support to them. LAPENNA delivers online materials that are useful and available to general CI practitioners.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在该项目中,组织了用于紧急神经网络架构的线性代数准备(LAPENNA)计划,以提供必要的知识来提高人工智能的素养,以维持数据驱动科学的网络基础设施(CI)生态系统中劳动力的增长和发展。该计划为教师,学生和研究人员提供综合专业知识,包括数值数学,线性代数软件,数据驱动方法和机器学习工具,以解决数据科学应用中的日常问题。该项目旨在帮助大学研究人员实现、设计和指导他们自己的内部数据驱动科学项目,并将他们的研究观点纳入他们的课程课程。在LAPENNA的指导下收集的知识和经验将有利于CI从业者以及一般感兴趣的各方,从而培养新的合作伙伴和潜在的研究计划和劳动力培训计划。LAPENNA专注于在新兴的CPU云系统和GPU平台上提供算法和计算技术、数值和编程程序以及人工智能软件实现。它每年举办两次培训。十场网络研讨会/讲座提供了支持的在线教程,供公众使用。在每一届会议中,有八组教师/研究人员和学生被选中参加LEPENNA项目。每队由来自一个机构的两名成员组成。每个队列的培训持续六个月,最后是一个为期一周的现场研讨会。在培训活动期间和之后,后续的问答环节将学院团队和pi联系起来,并继续为他们提供硬件和软件支持。LAPENNA提供对一般CI从业者有用和可用的在线材料。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kwai Wong其他文献
Autonomous Vehicle Control Using a Deep Neural Network and Jetson Nano
使用深度神经网络和 Jetson Nano 的自主车辆控制
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Rocco D. Febbo;Brendan Flood;Julian Halloy;Patrick Lau;Kwai Wong;Alan Ayala - 通讯作者:
Alan Ayala
Using High Performance Computing to Model Cellular Embryogenesis
使用高性能计算来模拟细胞胚胎发生
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Gerard Vanloo;Chung Ng;Kison Osborne;Kwai Wong;Ben Ramsey;Dali Wang;Z. Bao - 通讯作者:
Z. Bao
Kwai Wong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kwai Wong', 18)}}的其他基金
REU Site : Research Experiences in Computational Science, Engineering, and Mathematics (RECSEM)
REU 网站:计算科学、工程和数学的研究经验 (RECSEM)
- 批准号:
1659502 - 财政年份:2017
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
相似海外基金
HSI Pilot Project: Institutionalizing a Teaching and Learning Excellence Community of Practice focused on First-Year Student Success in STEM
HSI 试点项目:将卓越教学和学习实践社区制度化,重点关注一年级学生在 STEM 方面的成功
- 批准号:
2345247 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
MCA Pilot PUI: From glomeruli to pollination: vertical integration of neural encoding through ecologically-relevant behavior
MCA Pilot PUI:从肾小球到授粉:通过生态相关行为进行神经编码的垂直整合
- 批准号:
2322310 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Continuing Grant
HAIRCYCLE: a pilot study to explore and test regenerative, local, bio-based and circular models for human hair waste
HAIRCYCLE:一项试点研究,旨在探索和测试人类毛发废物的再生、局部、生物基和循环模型
- 批准号:
AH/Z50550X/1 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Research Grant
Reducing the cost of fuel cell components and pilot production of bipolar plate coatings
降低燃料电池组件成本并试产双极板涂料
- 批准号:
10088165 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Collaborative R&D
MCA Pilot PUI: Neural Signaling and Mechanisms Underlying Sensory Integration and Plasticity
MCA Pilot PUI:感觉统合和可塑性背后的神经信号和机制
- 批准号:
2322317 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
HSI Pilot Project: Improving Experiential Skills for a Diverse Software Engineering Workforce via Project-based Internships
HSI 试点项目:通过基于项目的实习提高多元化软件工程人员的经验技能
- 批准号:
2345141 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
HSI Pilot Project: Enhancing STEM Participation and Attainment at a Rural, Hispanic-Serving Institution
HSI 试点项目:在农村、拉美裔服务机构中提高 STEM 参与度和成就
- 批准号:
2345349 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
MCA Pilot PUI: Proxy-model comparison using carbon isotopes from annually banded marine calcifiers and ocean circulation inverse models to evaluate coastal carbon cycle processes
MCA Pilot PUI:使用年度带状海洋钙化物的碳同位素和海洋环流反演模型进行代理模型比较,以评估沿海碳循环过程
- 批准号:
2322042 - 财政年份:2024
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant














{{item.name}}会员




