Collaborative Research: MRA: Constraining the continental-scale terrestrial carbon cycle using NEON data
合作研究:MRA:使用 NEON 数据约束大陆尺度的陆地碳循环
基本信息
- 批准号:2017870
- 负责人:
- 金额:$ 59.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant life in U.S. forests consume large volumes of carbon dioxide, playing an important role in regulating the concentrations of this important gas in the atmosphere. There is an urgent need for scientists to reduce uncertainties in future projections of atmospheric carbon dioxide concentrations and to more confidently assess whether plants in forests will continue to offset carbon dioxide emissions to the atmosphere from the burning of fossil fuels. The NSF-funded National Ecological Observatory Network (NEON) is a continental-scale ecological observation facility that collects and provides quality-controlled data from 81 field sites across the United States that characterize and quantify how our nation's ecosystems are changing. NEON's measurements of plant photosynthesis and respiration are providing the data needed for computer projections of continental scale patterns, year-to-year variations, and trends in the global carbon cycle. This project will develop more refined continental-scale carbon profiles by using a novel approach to improve complex computer models and delivering a widely-sought application of NEON data. The investigators will broaden impacts of this project by providing training to early-career scientists, broadening diversity, sharing products with the research community, and enhancing research and education infrastructure. The results are anticipated to be of high value for integrated assessments of global change and will be useful for federal, state and local agencies, and land managers who are making decisions on managing U.S. natural resources.The investigators will constrain the continental-scale terrestrial carbon cycle by integrating observations from NEON, satellite data, data-driven methods, and data-model integration techniques. The objectives are to: (1) use NEON data to develop continental-scale flux products that are need to help realize NSF's goals for NEON; (2) evaluate information content of NEON data sets for reducing model uncertainty; (3) assimilate multiple NEON data sets into complex land models to quantify the U.S. land carbon sink and its uncertainty; (4) understand the continental-scale carbon dynamics and underlying regulatory mechanisms. First, the investigators will utilize NEON data to develop an hourly, gridded Gross Primary Production(GPP) product with uncertainty estimates based on satellite observations and meteorological data. Second, they will use NEON data along with solar-induced chlorophyll fluorescence (SIF) data from satellites to develop gridded complimentary GPP products with uncertainty estimates. Third, they will utilize multiple heterogeneous datasets from NEON and the gridded GPP products for quantifying the US land carbon sink potential and assess the effectiveness of NEON data to constrain parameter estimation and model prediction. Fourth, they will develop a multiple model ensemble to understand constraints of flux- vs. pool-based data on structure uncertainty in model prediction. Fifth, they will apply data assimilation techniques to quantify parameter uncertainty and assess constraints of multiple vs. single NEON data sets on parameter estimation with three different models. Finally, they will assess the US land carbon sink, its uncertainty, and regulatory mechanisms with NEON data-based gridded flux products, NEON data-trained models, and the traceability framework. This project will ultimately provide feedback towards improvement of models and NEON observations via uncertainty analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国森林中的植物消耗大量二氧化碳,在调节大气中这种重要气体的浓度方面发挥着重要作用。科学家迫切需要减少未来大气二氧化碳浓度预测的不确定性,并更自信地评估森林植物是否将继续抵消化石燃料燃烧向大气排放的二氧化碳。由 NSF 资助的国家生态观测站网络 (NEON) 是一个大陆规模的生态观测设施,从美国各地的 81 个现场站点收集并提供质量控制的数据,这些数据描述和量化了我们国家生态系统的变化情况。 NEON 对植物光合作用和呼吸作用的测量为计算机预测大陆尺度模式、逐年变化和全球碳循环趋势提供了所需的数据。该项目将通过使用一种新颖的方法来改进复杂的计算机模型并提供广受追捧的 NEON 数据应用,从而开发更精细的大陆规模碳剖面。研究人员将通过为早期职业科学家提供培训、扩大多样性、与研究界共享产品以及加强研究和教育基础设施来扩大该项目的影响。预计结果对于全球变化的综合评估具有很高的价值,并将对联邦、州和地方机构以及正在做出管理美国自然资源决策的土地管理者有用。研究人员将通过整合 NEON 观测、卫星数据、数据驱动方法和数据模型集成技术来限制大陆尺度的陆地碳循环。目标是:(1)利用 NEON 数据开发大陆规模的通量产品,以帮助实现 NSF 的 NEON 目标; (2)评估NEON数据集的信息内容以减少模型的不确定性; (3) 将多个 NEON 数据集同化到复杂的土地模型中,以量化美国土地碳汇及其不确定性; (4)了解大陆尺度的碳动态和潜在的监管机制。首先,研究人员将利用 NEON 数据开发每小时网格化的初级生产总值 (GPP) 产品,并根据卫星观测和气象数据进行不确定性估计。其次,他们将使用 NEON 数据以及来自卫星的太阳诱导叶绿素荧光 (SIF) 数据来开发具有不确定性估计的网格互补 GPP 产品。第三,他们将利用 NEON 和网格化 GPP 产品的多个异构数据集来量化美国土地碳汇潜力,并评估 NEON 数据约束参数估计和模型预测的有效性。第四,他们将开发一个多模型集成,以了解基于通量与基于池的数据对模型预测中结构不确定性的约束。第五,他们将应用数据同化技术来量化参数不确定性,并评估多个 NEON 数据集与单个 NEON 数据集对三种不同模型参数估计的约束。最后,他们将利用基于 NEON 数据的网格通量产品、NEON 数据训练模型和可追溯性框架来评估美国土地碳汇、其不确定性和监管机制。该项目最终将通过不确定性分析为模型和 NEON 观测的改进提供反馈。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solar-induced chlorophyll fluorescence detects photosynthesis variations and drought effects in tropical rubber plantation and natural deciduous forests
- DOI:10.1016/j.agrformet.2023.109591
- 发表时间:2023-08
- 期刊:
- 影响因子:6.2
- 作者:Xueqian Wang;P. Blanken;J. Wood;Y. Nouvellon;P. Thaler;P. Kasemsap;A. Chidthaisong;P. Petchprayoon;C. Chayawat;J. Xiao;Xing Li
- 通讯作者:Xueqian Wang;P. Blanken;J. Wood;Y. Nouvellon;P. Thaler;P. Kasemsap;A. Chidthaisong;P. Petchprayoon;C. Chayawat;J. Xiao;Xing Li
Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere
- DOI:10.1111/gcb.15775
- 发表时间:2021-06
- 期刊:
- 影响因子:11.6
- 作者:Anping Chen;J. Mao;D. Ricciuto;Dan Lu;J. Xiao;Xing Li;P. Thornton;A. Knapp
- 通讯作者:Anping Chen;J. Mao;D. Ricciuto;Dan Lu;J. Xiao;Xing Li;P. Thornton;A. Knapp
Emerging satellite observations for diurnal cycling of ecosystem processes
- DOI:10.1038/s41477-021-00952-8
- 发表时间:2021-07
- 期刊:
- 影响因子:18
- 作者:J. Xiao;J. Fisher;H. Hashimoto;K. Ichii;N. Parazoo
- 通讯作者:J. Xiao;J. Fisher;H. Hashimoto;K. Ichii;N. Parazoo
ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station
- DOI:10.1016/j.rse.2021.112360
- 发表时间:2021-03-02
- 期刊:
- 影响因子:13.5
- 作者:Li, Xing;Xiao, Jingfeng;Baldocchi, Dennis D.
- 通讯作者:Baldocchi, Dennis D.
TROPOMI observations allow for robust exploration of the relationship between solar-induced chlorophyll fluorescence and terrestrial gross primary production
- DOI:10.1016/j.rse.2021.112748
- 发表时间:2021-11-02
- 期刊:
- 影响因子:13.5
- 作者:Li, Xing;Xiao, Jingfeng
- 通讯作者:Xiao, Jingfeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingfeng Xiao其他文献
Heatwave effects on gross primary production of northern mid-latitude ecosystems
热浪对北部中纬度生态系统初级生产总值的影响
- DOI:
10.1088/1748-9326/ab8760 - 发表时间:
2020-04 - 期刊:
- 影响因子:6.7
- 作者:
Hang Xu;Jingfeng Xiao;Zhiqiang Zhang - 通讯作者:
Zhiqiang Zhang
Effect of the 2022 summer drought across forest types 1 in Europe
2022 年夏季干旱对欧洲 1 类森林的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mana Gharun;A. Shekhar;Jingfeng Xiao;Xing Li;N. Buchmann - 通讯作者:
N. Buchmann
Unveiling uncertainties in soil organic carbon modeling: the critical role of climate response functions
揭示土壤有机碳建模中的不确定性:气候响应函数的关键作用
- DOI:
10.1016/j.envsoft.2025.106537 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:4.600
- 作者:
Huiwen Li;Yue Cao;Jingfeng Xiao;Wenxin Zhang;Yiping Wu;Arshad Ali;Zuoqiang Yuan - 通讯作者:
Zuoqiang Yuan
Divergent responses of autumn vegetation phenology to climate extremes over northern middle and high latitudes
北部中高纬度地区秋季植被物候对极端气候的不同响应
- DOI:
10.1111/geb.13583 - 发表时间:
2022-08 - 期刊:
- 影响因子:6.4
- 作者:
Mei Wang;Peng Li;Changhui Peng;Jingfeng Xiao;Xiaolu Zhou;Yunpeng Luo;Cicheng Zhang - 通讯作者:
Cicheng Zhang
Global convergence but regional disparity in the hydrological resilience of ecosystems and watersheds to drought
生态系统和流域对干旱的水文恢复力存在全球趋同但地区差异
- DOI:
10.1016/j.jhydrol.2020.125589 - 发表时间:
2020-09 - 期刊:
- 影响因子:6.4
- 作者:
Baolin Xue;Guoqiang Wang;Jingfeng Xiao;David Helman;Wenchao Sun;Jianhua Wang;Tingxi Liu - 通讯作者:
Tingxi Liu
Jingfeng Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingfeng Xiao', 18)}}的其他基金
Assessing Ecosystem Carbon Dynamics over North America by Integrating Eddy Covariance, MODIS, and New Ecological Data through Upscaling and Model-Data Synthesis
通过升级和模型数据合成整合涡流协方差、MODIS 和新生态数据来评估北美生态系统碳动态
- 批准号:
1065777 - 财政年份:2011
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307253 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307251 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307252 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307195 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307197 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307196 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
- 批准号:
2307254 - 财政年份:2024
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Collaborative Research: MRA: Particulates in canopy flowpaths: A missing mass flux at the macrosystem scale?
合作研究:MRA:冠层流动路径中的颗粒物:宏观系统尺度上缺失的质量通量?
- 批准号:
2320976 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant
Collaborative Research: MRA: On thin ice- implications of shorter winters for the future of freshwater phytoplankton phenology and function
合作研究:MRA:薄冰——较短冬季对淡水浮游植物物候和功能未来的影响
- 批准号:
2306896 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
- 批准号:
2307188 - 财政年份:2023
- 资助金额:
$ 59.78万 - 项目类别:
Standard Grant